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1. Introduction 

Elastomers are elastic media which mixes as no one, also, they have three important 

properties: orientational order of large range in amorphous soft materials, macroscopic 

susceptibility to the molecular shape, and quenching to the topological constraints. Classical 

liquid crystals are fluids typically composed by rigid molecules, which with a continuous 

model, are represented by bars and exhibit an orientational order of large range. The 

simplest order displayed by these systems is the nematic, for which, all the molecules are 

aligned in average. Complementary, the polymeric long chains embodying anisotropic rigid 

units can be nematically aligned and may form polymeric liquid crystals. 

However, the long chains are elongated when their rigid monomeric components are 

oriented, giving rise to an anisotropic material. If additionally, the polymeric chains are joint 

to a backbone in such way that their topology is restrained, hence the melt condenses in a 

very elastic solid or rubber. It is convenient to mention that in general, within the rubbers, 

the nematic monomeric molecules retain the same mobility as in a liquid phase. 

These soft constrictions make the resulting material, which is then a solid very extensible. 

Rubbers resist mechanic deformations since the polymeric chains reach their maximum 

entropy when they stay in their natural state without deformation. The polymerization of 

these compounds creates links between the chains which joint to the backbone formed 

collectively among themselves. 

It is to be expected that in this process, the anisotropic rigid units of nematic character, for 

instance (nematogens) which lie in the inner of the medium, form spontaneously domains 

distributed in all the rubber, whose preferred orientation is to be in different directions. This 

variety of domains causes light scattering giving rise to a macroscopic turbid appearance to the 

material. One very important advance in the design of these materials was managed by 

Finkelman, by developing a procedure for obtaining samples which form a single domain. The 

basic idea consists in applied electric field to the melt substance in order to align the 

anisotropic monomeric units while the polimerization is taking place and/or the temperature 
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is decreased to maintain the orientational order of the oriented nematic elements and in turn 

attain a monodomain. 

A material prepared in this way is called as a liquid crystal elastomer and has the amazing 
property of being deformable, within certain interval of elongations, investing in this a 
practically negligible amount of energy. This is caused essentially by the reorientation and 
accommodation of the anisotropic structure formed by the rigid nematic monomers or other 
mesophases in the inner of long polymeric chains while the material is distorted in such way 
that the energy utilized is minimized when the mentioned structure turns.  
Nowadays the liquid crystal elastomers are synthesized to generate phases of the same variety 
obtained with classical liquid crystals. It can be created nematics, smectic and chiral liquid 
crystals. Similarly to any polymeric rubber, the materials are very deformable since their 
dimensions can be changed under the influence of external stresses as much as 300% of their 
original sizes. They can be easily oriented by electrical fields as the ordinary liquid crystals. 
Both features make of these new materials excellent candidates to design artificial muscles. On 
the other hand, their transparency in the monodomain phase and the fact that as solids do not 
require a container make them excellent candidates to be used as electro optic devices. 

2. Polymers 

2.1 Polymer configuration 
A polymer is a very long chain formed by many repeated molecular units, as much as 
thousands, called monomers. All polymeric chains possess a characteristic length l, at which 
the chains can be bended. This length can contain various monomers when the total number 
of monomers in the chain N is much larger than the number of monomers per length l and 
then we can affirm that there exist various possible spatial configurations for the polymer. 
Thus, it is possible to employ a Gaussian distribution to describe adequately the system. 
Here we shall assume that this is the case. 
 

 

Fig. 1. A chain composed by N bar of length a freely joint is statistically equivalent to the 
path of a random walk with fixed step a. 

A chain composed by N bar of length a freely joint like the one shown in Fig. 1 is statistically 
equivalent to the path of a random walk with fixed step a. The average mean square of the 
end to end vector ul formed after this walk of N steps (Warner & Terentjev, 2003) 

 2 2 2 2 21 1 1
,

3 3 3
x y z a N aL  =   =   =   = ≡R R R R  (1.1) 

where L Na= is the total length of the chain. In terms of the end to end vector which joint the 

monomers ui of length a, the distance between the two edges of the chain is given by the 
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magnitude of the vector: i i= ΣR u . This quantity is very important since provides a notion of 

the spatial configuration of the polymer chains and from the polymer chain distribution we 

can derive the free energy characterizing the system. The vectors ui are not correlated each 

other so that 2
i j ijaδ  =u u which is consistent with Eq. (1.1). 

A polymer is a thermodynamical system in equilibrium interacting with its surrounding at 

volume and temperature constants. Hence, the total number of possible conformations of 

one given chain NZ (or the number of possible random walk without restrictions) must be 

equal to the partition function of the chain: /H kT
N configZ e−= Σ , where H is the energy of the 

configuration, k is the Boltzmann constant and T is the temperature. If we take a random 

walk for which the two ends of the walks are fixed, we expect that the number of possible 

configurations is to be smaller than that of the system just mentioned. Thus the number of 

configurations for fixed boundary conditions is given by 

 ( ) ( )N N NZ p Z=R R , (1.2) 

where ( )Np R  is the probability of having a configuration with an end to end vector R . Since 

NZ  is the partition function of the system, the probability of distribution must be Gaussian 

and as a consequence its explicit normalized expression is given by (Kac et al., 1976): 

 
2 2

3/2

3 /2
2

3
( )

2
oR

N
o

p e
Rπ

− 
=    

RR , (1.3) 

Where oR  is the variance of the system and from Eq. (1.1) we get 2
oR aL= . 

The fact that the polymer chain is kept at volume and temperature constants allow us to use 

the Helmholtz free energy to describe the system which in agreement with the statistical 

physics is given by ( )B NF k TlnZ= − R ; substitution of Eqs. (1.2) and (1.3) in this expression, 

yields 

 
2

2

3
( )

2
o B

o

F F k T C
R

 
= + +   

R
R , (1.4) 

where Fo = −kBTlnZN is the free energy of the polymeric chain without restrictions in their 
ends and C is the constant coming from the normalization of the distribution PN,.Fo and C 
are constants independent of R, which only determine the reference point, thus their values 
are irrelevant to find the minimum of the free energy of the system. We remark that the 
energy given in Eq. (1.4) is purely entropic since only depends on the number of possible 
configuration of the systems. To obtain this expression we assume that all the possible 
configurations contribute with the same energy and we neglect the chemical energy caused 
by the electromagnetic repulsion between the molecules. If we take into account the internal 
energy associated with chemical processes, U(R), the free energy of the system is given by 

 ( ) ( ) ( )F U TS= −R R R , (1.5) 

where the entropy per molecule is represented ( )S R . Strictly speaking, this term should be 

considered however it has been shown that the entropy (Warner & Terentjev, 2003) 

dominates the free energy and then we can neglect it, 2 2( ) 3 / 2B oS R k R= − R . 
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2.2 Polymeric liquid crystals 
A polymeric liquid crystal combines the spontaneous orientation of the liquid crystals with 
the elasticity governed by entropy discussed above. It is necessary a delicate balance in these 
properties to create a polymeric liquid crystal. 

2.2.1 Polymeric liquid crystals shape 
The average shape of the polymeric main chain is crucial since this is responsible of the 
equilibrium elastic response of the network it belongs. Some ordinary polymers are isotropic 
or spheric so that only one dimension is enough to characterize these materials. In contrast, 
the nematic polymers may adopt diverse shapes due to the fact that the average backbone is 
distorted by the reorientation suffered by the molecular bars guided by the director n , that 
is, the nematic order modifies the backbone form of the polymer. Hence, nematic polymers 
require more than one direction to describe their anisotropic form. 
To characterize the chain form and its probability distribution the quadratic mean square of 
shape is given by 

 
1

,
3

i j ijR R l L  =  (1.6) 

where we have defined ijl as the effective length steps in distinct directions. For uniaxial 

polymers i jR R  ,  is the same for every perpendicular direction to n . Thus, if n is along the 

z-axis, where Rx = Ry = R⊥ and the tensor l for this case is 

 

0 0

0 0

0 0
o

l

l

l

⊥

⊥

  
=    

l



, (1.7) 

where l⊥ and l are the length steps in the directions parallel and perpendicular to n , 

respectively. In general, when n is not necessarily aligned with one of the axes of our 

reference system, the matrix l is not necessarily diagonal but uniaxial and has the form: 

 1 1
( [ 1] )     and     ( [ 1] )o ol r l

r
−

⊥ ⊥= + − = + −l δ nn l δ nn , (1.8) 

where we have defined the radius r, as the ratio between parallel and perpendicular 

effective length steps as /r l l⊥=  . 

If 1r > , means that we have a prolate backbone, which is larger along the direction n ; 

Instead for 1r < , we have an oblate, whose backbone is larger in perpendicular plane to n . 

The probability of find a configuration with end to end vector: R , Eq. (1.3). On the other 

hand the probability of find certain configuration for the anisotropic case, is obtained by 

using Eq. (1.1) from which it can be derived 2
o ijR l L= and 2

i jR R=R . By substituting these 

expressions in Eq.  (1.3), we get the probability for the anisotropic case: 

 

1
1/2 33

23 1
( )

2 [ ]

i ij jR l R
Lp e

L Detπ

−−     
=      R

l
. (1.9) 
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3. Nematic rubber elasticity 

Nematic elastomer systems can be quite elastic, that is they can be extended or compressed 
for large proportions. The difference between nematic and isotropic rubbers is the molecular 
shape anisotropy induced by liquid crystal order. The simplest description of nematic 
rubbers is arising from extension of the molecular theory of rubbers just discussed in the 
foregoing section and is known as the neoclassic theory. 
The number of configurations in one thread connecting two crosslinkings separated by a 

distance R in one nematic rubber is proportional to the anisotropic Gaussian distribution 
given by Eq. (1.9). 

The step length vector l reflexes the actual nematic order in the rubber. In contrast, in the 

formation state the end to end vector is fR and the shape of the chains in that state is 

similarly described by Gaussian distribution whose form is the same as Eq. (1.9) but with 

step length vector ol . One reason for having a different distribution is that the temperature 

changes and thus the nematic order as well. If the starting state is nematic, then an 

orientation change can also modified the distribution. As before, let us consider that a total 

deformation tη affine leads from the formation state fR to the actual situation ·t=R η R . The 

free energy, is obtained by averaging over a ensemble of initial condition whose energy of 

formation are the same 

 
0

1
3( )

3 [ ]
ln ( ) · · ln

2 2
=

f

B B
B p

k T k T Det
k T p

L a

−  
= − +   R

l
R R l R , (1.10) 

the term in [ ]Det l is due to the normalization factor containing the information of the 

nematic order by means of the step length tensor l . The free energy can be rewritten as 

 
0

13
· · · ·

2
TB

f f
p

k T

L
−= R η l ηR  (1.11) 

The average over the set of formation states can be performed directly using the 

relation
0 ( )

/ 3
f

f f o
p

L=
R

R R l , so that the average energy per thread is finally 

 ( )1
3

[ ]
· · · ln

2 2
TB B

o

k T k T Det
Tr

a

−  
= +   

l
l η l η . (1.12) 

This expression is a generalization of the classical free energy for the elasticity for a thread 
for which is known as the neoclassic free energy. To obtain the whole free energy of the 

rubber we need to count the number of threads per volume sn , that is sF n=  and since the 

linear shear modulus of a rubber is s Bn k Tµ = . The free energy density is given by 

 ( )1· · ·
2

T
oF Tr

µ −= l η l η  (1.13) 

This expression is valid for all the deformation, including the larger ones, but it cannot 

describe those deformations which can stretch totally the polymeric chains. This expression 

involves the orientational information about the initial state 0n and actual state n of the 
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elastomer by means of ol and l . By contrary the free energy of ordinary nematic liquid 

crystal only depends on the actual state of distortion. Eq. (1.13) exhibits a complex structure 

since the distortions appear expressed in terms of the combination 1· ·T −η l η . 
 

 

Fig. 2. A cholesteric elastomer submitted to distortion along its chiral axis, which in this case 
we chose to be the z − axis. 

4. Chiral elastomer under an axial deformation 

Let us consider a cholesteric elastomer submitted to distortion along its chiral axis, which in 
this case we chose to be the z-axis, as shown in Fig. 2. 
The deformation tensor, in its simplest, can be expressed as (Warner & Terentjev, 2003): 

 

1 / 0

0 1 /

0 0

xz

yz

η η

η η

η

   =    
η , (1.14) 

where we have simplified the notation by the convention zzη η= , as we discussed above, to 

keep the volume fixed , it is necessary to ask for 1Det =η , which is straightforwardly fulfil 

by this expression since
1 1

1Det η
η η

= =η . The terms xzη and yzη , are coming from the fact 

that we allow the director to rotate in the plane x-y which will be modified by expanding the 
elastomer along the z-axis. 
The initial elastomer vector without deformation is given by: {cos ,sin ,0}o o oq z q z=n , 

where 2 /oq pπ= is the helix wave number and p is the spatial periodicity or pitch. After the 

deformation, the director will be rotated by the angle
2

π
ω α= − , in such way that it lies over 

the surface of a cone Fig. 2; the new vector after deformation can be expressed 
as {sin cos ,sin sin ,cos }qz qzα α α=n , where 0 /q q η= is the new helix wave number scaled 

by the strainη ; the initial step length vector without deformation, ol , is defined in 

agreement with Eq. (1.8) in terms of on and the inverse tensor is similar to Eq. (1.8) by 

replacing the vectors n by on . 

The Helmholtz free energy of the system is given by Eq. (1.13) in terms of ol and 1−l of  

Eq. (1.8). Upon expansion of the Helmholtz free energy we can express this as 
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 · · ·TF c= + +x A x b x  (1.15) 

where 

2 2

2 2

1 3 ( 1)cos2 2( 1)cos2 sin ( 1)sin 2 sin

4 2 ,
( 1)sin 2 sin 1 3 ( 1)cos2 2( 1)cos2 sin

2 4

r r r qz r qz

r r

r qz r r r qz

r r

α α α

α α α

 + + − − − −
−  =  − + + − + −

−  
A  

 
( 1) cos sin 2 ( 1) sin sin 2

{ , }
r qz r qz

r r

η α η α− −
= −b , 

 
3 3 3(3 ) ( 1)( )cos2

2

r r r r
c

r

η η η α

η

+ + + + − −
=  

and x = {ηxz, ηyz}. Eq. (1.15) represents the free energy of our system; it contains the 

information of the deformation. To find the state of deformation after a relaxation it is 

necessary to find the minimum of the free energy. When we extend an elastomer, first the 

strains are relaxed and after that the molecules will reorient. The minimum of energy is 

found by searching the values ηxz and ηyz which minimize the energy and then the optimum 

value of α. 

To this purpose, we find the minimum with respect to xzη and yzη by diagonalizing the 

matrix A and translating to the principal axes system of the deformation (where we have 

denoted the strains by: 'xzη and 'yzη ). Using the fact the minimum of system's energy is the 

same in any frame. Once doing this we find 

 
2 2 2 2 22 1 1

([ 1 ( 1)cos2 ]( ) 2( 1) sin 2 2
2

yz xz xz

r
F r r r

r
η η α η η ηη α η

µ η η
′ ′ ′= + + − + + − − − + − − ,(1.16) 

This free energy depends on the strains and the angle. These variables used to be coupled to 

keep constant the free energy and cause a soft elasticity for which the elastomer is to be 

deformed at no energy cost. For this reason we minimize the energy by using two steps.  

We first find the minimum of Eq. (1.16) with respect to the strains and then minimize  

the resulting expression with respect to the angle. Performing the first step, we get from 

(1.16): 

 
( 1)sin 2

0    and     
( 1) ( 1)cos2

yz xz

r

r r

α
η η η

α
′ ′ −

= =
+ + −

. (1.17) 

Notice that this expression allows to write the strains in terms of the orientation angle. Thus, 

after substitution of this expression in Eq. (1.16) we obtain the following expression which 

only depends on the angle α: 

 
21 2 3 1 ( 1)cos2

2 1 ( 1)cos2 2

r r
F

r r

η α
µ

α η

 + + + −
= +  + + −  . (1.18) 
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It remains to know the value of α that minimizes the latter expression. The director vector n 
will incline towards the z-direction with an angle ω (see Fig. 2) after the deformation, to find 
the value of ω, we minimize the free energy Eq. (1.18) we respect to ω, we get: 
 

 
3/2 3/21 2 1

cos2 ;       ( ) arcsin
1 1

r

r r

η η
ω ω η

+ − −
= =

− −
. (1.19) 

The latter equation indicates which is the degree of reorientation of the cholesteric, the 

maximum deformation is reached when the director vector aligns totally parallel to the z-

axis, that is, when / 2ω π= , we find that 2/3rη = ; when there is no deformation 1η = and 

0ω = . 

5. Propagation of waves in a layered medium 

Optical propagation in layered media can be studied by conveniently writing Maxwell's 

equations in a 4 4× matrix. First, we show that in this matrix representation the boundary 
conditions of waves impinging on material can be imposed in a simpler way in such a way 
the transfer and scattering matrix formalism can be used in a natural way to obtain the 
transmittances and reflectances (Chuang, 2009; Hecht & Zajac, 1986). Next, we analytically 
solve the problem of axial propagation of an electromagnetic wave through a cholesteric 
elastomer by solidly rotating the laboratory reference system along the axial direction in the 
same way as the director n . Finally, we compute the optical spectra of a cholesteric 
elastomer under the influence of an externally induced mechanical strain.  

5.1 4 x 4 Matrix representation 
The transversality of electromagnetic waves suggest to rewrite the well known Maxwell 
equations in a representation which permits to analyze, at the same time, the behaviour of 

the four transversal components (2 components for electric field E and 2 components for 

magnetic field H ). This formalism is frequently referred to as Marcuvitz-Schwinger 
representation (Marcuvitz & Schwinger, 1951). If we define the four-vector 
 

 
( ) ( )

( , , ) ( ) x y x y

x

yi k x k y i t i k x k y i t

x

y

e

e
x y z z e e e

h

h

ω ω+ − + −

   
= =     

Ψ β , (1.20) 

with ω the angular frequency of the propagating wave and xk , yk the transversal 

components of wavevector. Maxwell’s equations, inside a non-magnetic medium, can be 

written as: 
 

 ( ).i z
z

∂
=

∂
A

β
β , (1.21) 
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where the 4 4× matrix ( )zA has the particular elements 
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k
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  − − − + −  
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zz zz z
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z zz

k k k k
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ε ε ε ε
ε

ε ε ε ε

                  − + − −        
  (1.22) 

 

ijε , with , , ,i j x y z= the elements of dielectric tensor and 0 02 /k π λ= the wavenumber in free 

space. It is worth to mention that, in writing expressions (1.20), we have defined the 

dimensionless electric e and magnetic h  fields related to E and H fields as follows: 
 

 1/2 1/2 1/2 1/2
0 0 0 0 0 0       , , , ,  Z Z Z Zµ− −= = = =e E d D h H b B  (1.23) 

with 0 0 0/Z µ=  the free space impedance and 0ε and 0µ the permittivity and permeability 

of free space, respectively. 

5.2 Boundary condition 
Let us consider a cholesteric elastomer confined between two planes at z = 0 and z = d where 

the optical properties continuously depend on z and the surrounding medium is air. This 

implies that the elements of dielectric tensor εij depend only on the z− coordinate. An 

incident electromagnetic wave, having wavevector kt = (kx, ky), impinges from the left side of 

the cholesteric elastomer. This electromagnetic wave propagates through the sample and it 

is transmitted and reflected outside the medium having the structure 

 ( , , ) ( )exp[ ]x yx y z z k x k y= +β β , (1.24) 

because the phase matching condition implies the continuity of the tangential components 

of k. 

The general solution of the differential equation (1.21) for electromagnetic waves 

propagating in homogeneous media is the superposition of four plane waves, two left-going 

and two right-going waves. With this in mind, we state the procedure to find the amplitudes 

of the transmitted (at z = d) and reflected waves in terms of incident waves at z=0. This 

implies the definition of the following quantities (Altman & Sucky, 1991): 

i. The propagation matrix U(0, z), that is implicitly defined by the equations 

 ( ) (0, ). (0), (0,0) ,z z= =U Uβ β 1I  (1.25) 
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where1Iis the identity matrix and (0, )zU satisfies the same propagation equation (1.21) 

found for β : 

 (0, ) ( ). (0, )z z i z z∂ =U A U ; (1.26) 

the propagation matrix gives the right-side field amplitudes of the cholesteric elastomer as 

function of the left-side ones. 

ii. For a specific value d , the transfer matrix is defined as (0, )zU . 

iii. The scattering matrix S , that gives the output field as function of the incident one. The 

matrix S is defined as: 

 out in= S.α α  (1.27) 

where inα and outα are the amplitudes of the in-going and out-going waves. 

To find out S , we must express the field, in any one of the external media, as a superposition 

of planes waves, by setting: 

 1; (0, ) (0, ). ,d d−= =ααT. U .T U Tβ  (1.28) 

where 

 1 2 1 2( , , , )Ta a a a+ + − −=α . (1.29) 

The relation = αT.β can be interpreted as a basis change in the four dimensional space of the 

state vectors β . The columns of T are the β vectors representing the four plane waves 

generated by the incident waves in the two external medium (here we assume as identical). 

The elements of vectorα are the amplitudes of the four plane wave. The choice of the new 

basis could be different depending on the particular problem. By setting 

 ( )
ff bf

fb bb

 
=    α
U U

U
U U

, (1.30) 

the scattering matrix writes: 

 

1 1

1 1

ff bf bb fb bf bb

bb fb bb

− −

− −

 − =  − 
U U U U U U

S
U U U

. (1.31) 

In equations (1.29) and (1.30) the symbols + and f (- and b) mean forward (backward) 

propagating waves. 

We point out that the methods of transfer and scattering matrices are very useful in 

studying the plane wave transmission and reflection from surfaces or a multilayered 

medium. 

Eq. (1.21) can be formally integrated over a certain distance d of the cholesteric 

 0
( )

( ) · (0)
d

i z dz
d e

′ ′=
A

β β , (1.32) 

www.intechopen.com



 
Cholesteric Elastomers with Mechanical Control of Optical Spectra 

 

351 

and by straight comparison of Eqs. (1.25) and (1.32), the transfer matrix (0, )zU is defined as: 

 0
( )

(0, )
d

i z dz
d e

′ ′=
A

U , (1.33) 

where plane waves are incident and reflected in the half-space 0z < and a plane waves are 

transmitted on the half-space z d> . 

It can be seen immediately that the problem of finding (0, )zU is reduced to find a method to 

integrate expression (1.33) on the whole cholesteric elastomer. Because of the non-

homogeneity of the medium proposed here, we consider it as broken up into many thin 

parallel layers and treating each as if it had homogeneous anisotropic optical parameters 

(Berreman & Scheffer, 1970). In this way, (0, )zU  is obtained by multiplying iteratively the 

matrix for each sublayer from 0z = to z d= . 
In next section, we will show that for axial propagation in a cholesteric elastomer, and by 
choosing appropriately a reference system, the system (1.21) and the transfer matrix U have 
completely analytical solutions. 

Now, we proceed to give the explicit form of the four-vector β for the surrounding medium 

(free space). As said above, the general solution of the differential equation (1.21) for 

electromagnetic waves propagating in homogeneous media is the superposition of forward 

and backward propagating waves. We consider an incident wave from left-half space with 

wavevector, 0( , , ) (sin cos ,sin sin ,cos )x y z dk k k k n θ ϕ θ ϕ θ= =k , where dn is the refractive index 

of surrounding medium,θ is the angle made between k and z axis− and ϕ is the angle made 

between k and x axis− in the xy plane− . For an arbitrary polarization state the solutions of 

(1.21) can be expressed as (Lakhtakia & Reyes, 2006; Espinosa-Ortega & Reyes, 2008): 

( )
2 2 2 2

,    for 0 ,    

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2

z z

z z

ik z ik z
L R L R

ik z ik z
d L R d L R

i i i i
a a e r r e

z z
i i i i

in a a e in r r e

−− −

−− −

+ +

+ +

    
− + − +        = ≤    

− + + +         

− + − +

− + − +

u v u v u v u v

u v u v u v u v
β  

  (1.34) 

where La , Ra represent the amplitude of incident propagating waves and Lr , Rr denote the 

reflection amplitude of propagating waves. The subscript indexes R and L correspond to 

right- and left-circularly polarized wave, respectively. The unit vectors û and v̂ are defined 

as 

 ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆsin cos       and      cos sin cos sin ,ϕ ϕ ϕ ϕ θ θ±= − + = + +u x y v x y z  (1.35) 

with x̂ , ŷ , ẑ the unit vectors parallel to the , ,x y z axis− − − , respectively. In the region z d≥ , 

we write the transmitted field as 

 

( )

( )

ˆ ˆ ˆ ˆ
,

2 2
( ) ,    for .    

ˆ ˆ ˆ ˆ

2 2

z

z

ik z d
L R

ik z d
d L R

i i
t t e

z z d
i i

in t t e

−+ +

−+ +

 − + 
−    = ≥ − + 

− +     

u v u v

u v u v
β  (1.36) 
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At the tangential components of e and hmust be continuous across the planes 0z =  and 

z d= , the boundary values (0)β and ( )dβ can be fixed as: 
 

 
1 1

(0) ·         and        ( ) · ,
02 2

0

R R

L L

R

L

a t

a t
d

r

r

         = =            
Q Qβ β  (1.37) 

where 
 

 

cos cos cos cos cos cos cos cos

cos sin cos sin cos sin cos sin

cos cos cos cos cos cos cos cos

cos sin cos sin cos sin cos sin

sin sin sin si

       

d d d d

d d d d

in in in in

in in in in

i i i i

θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ θ ϕ

ϕ ϕ ϕ

    − −  − − 
− −

+

=Q

n

cos cos cos cos

sin sin sin sin

cos cos cos cos
d d d d

d d d d

i i i i

n n n n

n n n n

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

  
− −  − −  − − 

. (1.38) 

If we restrict our analysis to the case when the electromagnetic wave is incident parallel 

to z axis− , the anglesϕ andθ equal zero and expression forQ is reduced to 
 

 0

1 1 1 1

d d d d

d d d d

i i i i

in in in in

n n n n

  
− − =  − −  − − 

Q . (1.39) 

 

Using Eqs. (1.32), (1.33) and (1.37) the problem of reflection-transmission can be established 
as follows 
 

 
0

0

R R

L L

R

L

t a

t a

r

r

         =            
M·  (1.40) 

where 1· (0, )·d−=M Q U Q and (0, )U d are defined in (1.33). Notice that the matrix equation 

(1.40) gives a set of coupled equations relating amplitudes  n, a  , dL R L Ra a r r (from 0z ≤ ) to 

transmitted amplitudes ,L Rt t  (for z d≥ ). 

The scattering matrix S relates amplitudes  n, a  , dL R L Rt t r r with the incident amplitudes ,L Ra a . 

This relation can be expressed in terms of matrix M as follows (Avendaño et al., 2005) 
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         with        

R RR RL

L R LR LL

R L RR RL

L LR LL

t t t

t a t t

r a r r

r r r

          = =              
S S· , (1.41) 

Co-polarized coefficients have both subscripts identical, and cross-polarized have different 

subscripts. The square of the amplitudes of t and r is the corresponding transmittance and 

reflectance; thus,
2

RR RRT t= is the transmittance corresponding to the transmission 

coefficient RRt , and so on. In the absence of dissipation of energy inside the sample, the 

principle of conservation of energy must be satisfied, this means that 

 1        and        1  RR LR RR LR RL LL RL LLT T R R T T R R+ + + = + + + = . (1.42) 

Before ending this section, we mention that an alternative to find the transmission and 
reflection coefficients is using the expressions given by (1.30) and (1.31). Also, the system of 
equations (1.40) can be solved numerically to find the scattering matrix. 

5.3 The Oseen transformation 

Using a numerical procedure the set of coupled differential equations (1.21) can be solved in 

a straight way. Nevertheless, the intrinsic helical symmetry of a cholesteric elastomer allows 

to suggest the possibility of finding a reference system, for normally incident wave, for 

which the solution can be obtained analytically. For this aim, it is convenient to write the 

coupled equations in a frame of reference in which the matrix A is diagonal and not 

dependent on z propagation coordinate. This can be realized by rotating solidly and 

uniformly the four-vector β around z − axis, with the principal axes of ijε making constant 

angles with z . The required transformation can be realized by setting: 

 ( ).         and        ( ) ( ). ( )

x

y

x

y

e

e
qz qz z qz

h

h

   
= = − = −    









Hβ β .A    (1.43) 

with ( )qz the rotation matrix defined as 

        

0 1 0 0

1 0 0 0
( ) exp( ) cos sin ,

0 0 0 1

0 0 1 0

 qz qz qz qz

−   = ≡ + =  −   
R R R1I , (1.44) 

/oq q η= and 1I the 4 4× identity matrix. This transformation is known as Oseen's 

transformation (Oseen, 1933). For axial propagation and by considering the explicit form of 

dielectric tensor ijε for the cholesteric elastomer, the Eqs. (1.21) are reduced to 

 
d

i
dz′

=
 H.

β
β , (1.45) 
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the matrixH is given by 

 

1

1

1

1

0 0 2

0 2 0

0 2 0

2 ( ) 0 0

iq

iq

iq

iq

πλ

πλ

π λ

π λ η

−

−

−
⊥

−

 −  −
=  

− −    

H


 

 (1.46) 

and 

 
2 2

( )
sin ( ) cos ( )

η
α η α η

⊥

⊥

=
+ 




 
 (1.47) 

λ is the wavelength in free space. Here  and ⊥ represent the principal values of  and µ in 

the rotating frame with axes 1 2, ,x x z . In what follows, and to simplify notation, we omit the 

symbol ( ~ ) of four-vector β , e and h . Unless we say the contrary, by writing β , e and h , 

we will always mean the fields in the rotating frame and z the dimensionless variable. 

Since the system matrix H is z − independent, the propagation equation (1.45) admits four 

solutions having the form of plane waves 

 ( ) exp( )j j
jz in z= tβ , (1.48) 

where , j
jn t are the eigenvalues and eigenvectors ofH , respectively. They are given by: 

 ( )
( )

2
2 2
1,2 2

2 2 2
1 1 1 1 1 1 1

2 2 2
2 2 2 2 2 2 2

4 2
,

, (4 ), 2 ,2 ( ) 2 ,

, (4 ), 2 ,2 ( ) 2 ,

m

m m m

m m m

u
n q

c n u i q u iq n u q

c n u i q u iq n u q

π π

λ

λ λ π λ η π λ

λ λ π λ η π λ

±

±

= +

= ± + +

= ± + +











t

t



    

    

 (1.49) 

where 

 ( )

2 2 2 2
1,2

1/2
2 2 2

2 , 2 ,

4 ( ) 2 (2 ) , ( 1,2)

( ) ( )
,         

        

   

.
2

 

2

 

c m c

k k k m m k

c m

u a q u a u

c n u q u k

a

π λ π

λ π η λ π

η η

−

⊥ ⊥

= + =

= + + =

− +
= =



 



   

     


 (1.50) 

As shows (1.48) the internal field can be represented as a superposition of the four 
eigenwaves (amplitude representation), by setting 

 ( ) exp( ) ( )j
j jz a in z z= ≡ αt T.β , (1.51) 

whereT is the matrix whose j th− column coincides with jt and ( )zα is the 4-vector with 

components exp( )j ja in z . Obviously,α and = αT.β represent the same state in two different 

sets of basis vectors. The metrization of the state space is obtained by defining a metric 
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tensorG and a scalar product 1 2
†

2
†
1β ≡ α. .G G.β α .β α , where βG and †

β=α .G T G .T are the 

matrices representingG in the two sets of basis vectors. Setting 

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

β

  
− =  −   

G , (1.52) 

the norm of the state vector represents the time average of the z − component of the 

Poynting vector, and the tensorG satisfies the relation † 1.−≡ ≡G G G  

In lossless media the z − derivative of the norm is identically zero and the matrixG .Hβ is self-

adjoint: † †( )= ≡ β.H .HG G H G.β β . This property and the fact that the eigenvalue equation 

for H is biquadratic imply that the eigenvalues are 1 2 3 1 4 2, , ,n n n n n n= − = − , with jn real or 

purely imaginary. It is worth mentioning that the normalization constants 1 2,c c were obtained 

using the metric tensorG ; this means that 
1/2

k k kc t Gt
−∗= with 1,2k = , and kt∗  is the 

conjugated complex of eigenvectors kt . 

Only the modes 1n show a band gap for λ within the interval defined for the positive roots of 

equation 1 0n = . Band edges are given by 1 2 / oqλ πη ⊥=  and 2 2 ( ) / oqλ πη η=   . Here, the 

modes 1n are pure imaginary and their corresponding eigenvectors 1± define evanescent and 

linearly polarized standing waves. The central wavelength of the bandgap is   

 
( )

1 2
3/2

1
2 2 1 /( 1)

c

a

p

r

ηλ λ
λ

η

⊥

⊥

 
+  = = + + − −  

 

 
 (1.53) 

where Eqs. (1.19) and (1.47) were substituted in the last equation. This equation 

demonstrates clearly that for a positively anisotropic elastomer, the reflected wavelength 

cλ increases by stretching the sample along the helix axis.  This behaviour is in qualitative 

agreement with the biaxial extension experiments performed by Finkelmann et al. 

(Finkelmann et al., 2001) in which cλ decreases due to an effective compression along the 

helix axis. We finally observe that within the gap the polarization of the propagating 

eigenwaves 2± is nearly circular and, in general, they are elliptically polarized. 

6. Reflection bands of distorted elastomers with and without defects 

It is a known fact that structural chiral materials presents the circular Bragg phenomenon in 

a wavelength regime (Hirota et al., 2008), where normal incident electromagnetic plane 

waves of left- and right-circular polarization states are reflected and transmitted differently, 

i. e., light of right handedness is highly reflected in a right helical structure whereas a similar 

plane wave but of the reverse handedness is not. Thus, structural chiral materials are 

circular-polarization rejection filters in optics (Avendaño et al., 2005; de Gennes & Prost, 

1993; Macleod, 2001). In addition, cholesteric elastomers are very sensitive to external 

stimuli as electric fields, temperature and mechanical stress. Therefore, it is possible to 

control the Bragg regime with these sorts of stimuli. Cholesteric elastomers are formed by 

monomers of liquid crystals cross-linked to polymeric chains that produces a flexible 
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material whose molecular order is similar to cholesteric liquid crystals with the advantage 

that in this new material it is feasible to change the optical properties by means of 

macroscopic deformations. In this section we focus in the control of circular Bragg 

phenomenon under the influence of an externally induced mechanical strain applied 

parallel to the helical axis of a slab of cholesteric elastomer. 

One or more defects in a periodic structure may give rise to resonant modes inside the 
photonic band gaps, namely standing waves with huge energy density localized in the 
proximity of the defects (defect modes). A conventional 1D structure with only one defect 
can be considered as a Fabry-Perot interferometer in which the reflecting layers at the two 
sides of the cavity are constituted by 1D crystals whose thickness is comparable with the 
attenuation length of the standing waves within the gap, which are exponentially 
attenuated. The cavity acts here as a defect in the periodic structure. Very interesting optical 
properties are obtained by considering: 1) anisotropic periodic structures, which display two 
different sets of band gaps for light with different polarization states, and 2) samples with 
more than one defect. 
In this section we also consider theoretically light propagation along the helix axis of 

samples in which the periodic structures are cholesteric elastomers and the thickness of the 

cavities goes to zero. Any defect reduces therefore to a simple discontinuity plane within the 

periodic structure. Such samples can be obtained as follows: 1) we consider first an 

cholesteric elastomer without defects between planes orthogonal to the helix axis; 2) then we 

cut the sample in such a way to obtain two or more layers between parallel planes; and 3) 

we finally rotate any layer with respect to the preceding one around their common helix axis 

by a given angle ξ (twist angle) (Lakhtakia, 2000; Schmidtke et al., 2003; Ozaki et al., 2003; 

Song et al., 2004). 

Some interesting numerical results have already been found recently for helical photonic 

crystals with only one twist defect (Becchi et al., 2004; Hodgkinson et al., 2000; Kopp & 

Genack, 2002; Schimdtke & Stille, 2003; Wang & Lakhtakia, 2003; Oldano, 2003; Kopp & 

Genack, 2003). Here we present a theoretical and analytical approach for samples with any 

number of twist defects under the action of axial strain. 

6.1 Mechanical control of optical spectra in a cholesteric elastomer without defects 

The reflectances and transmittances obtained from the scattering matrix or the transfer 

matrix are in terms of the elongationη , the wavelength λ and the incidence angles of light, 

θ (angle between the light direction and the helical axis) and ϕ (angle between the light 

direction and the x − axis). By numerically solving the set of equations (1.40) for oblique 

incidence we obtained these optical spectra for a sample of siloxane backbone chain reacting 

with 90% mol and 10% of the flexible difunctional cross-linking groups (di-11UB). The rod 

like mesogenic groups are present in the proportion 4:1 between the nematic 4-

pentylphenyl-4'-(4-buteneoxy) benzoate (PBB) and the derivative of chiral cholesterol 

penteonate (ChP) (Cicuta et al., 2002).  The behaviour of the optical spectra for another 

material is expected to be qualitatively similar to the presented here; the material 

parameters are: 1.16,  10.7 ,  p/2 214 ,  1.91,  2.22, 1r L m nmµ µ⊥= = = = = =  . 
The optical spectra show a circular Bragg regime in the RRR co-polarized transmittances and 

reflectances, which depends on the axial elongation of the cholesteric and the incidence angles 
of light. These spectra are consistent with the circular Bragg phenomenon for which the right 
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circularly polarized wave impinging a right-handed elastomer, is highly reflected, while the 
left circularly polarized wave is transmitted, as we can see in Fig. 3, for reflectances 
We see in this figure that the center of the bandgap blue-shifts as the incidence angle 
increases,  as  it  occurs  in  the  absence  of  stress.  We  also  observe  that  by  increasing the 
elongation, the band width decreases as can be seen by comparing the right and the left 
hand columns of this figure, that correspond to η = 1 (elastomer under no deformation) and 
ηm = 1 + (ηM - 1) / 2 = 1.052 (elastomer submitted to half of its critical elongation). Moreover, 
when the strain is the critical ηM = 1.1622/3 = 1.1040, the bandgap disappears due to the fact 
the cholesteric director is completely aligned with the helical axis as can be observed in Fig. 
4. This effect opens up the door for proposing novel devices to mechanically control the 
light flow, since it allows to switch off a bandgap by applying a mechanical stress to the 
elastomer. This is clearly illustrated in Fig. 4 where the bandwidth diminishes as a function 
of the deformation for normal incidence. Further results confirm the displacement of the 
band reflection for RRR for larger incidence angles as η get larger (Espinosa-Ortega & Reyes, 
2008). Therefore, these results show the possibility of mechanically control the circular 
Bragg phenomenon for tuning and switching applications. On the other hand, analytical 
results show that the reflected wavelength at normal incidence red-shifts by stretching the 
elastomer along the helical axis. 

6.2 Optical spectra of elastomers with defects under axial strain 
In the last section the mechanical control of optical spectra in a slab of cholesteric elastomer 
was studied. The light impinges on the slab at normal and oblique incidence. The solutions 
are found performing a numerical integration to find the transmission and reflection 
coefficients as a function of the mechanical elongation and the incidence angles. However 
the strongest results are in normal incidence where an analytical solution of the problem is 
found. Particularly, if a twist defect with / 2ξ π= is introduced in the center of the slab, it 

causes a break of the symmetry that gives rise to a peak in transmission, in the middle of the 
Bragg regime. Thus, in the case of normal incidence, the wavelength of this peak, as a 
function of the elongationη , is easy to find from the results for a slab without defect. As 

said above the band gap and transmittance of a cholesteric elastomer can be controlled by 
elongating the material along its helix axis, then, the elastically control of the lasing in a 
cholesteric elastomer is deduced. 
A result that was shown in the last section is that the axial elongation in a cholesteric 
elastomer close the band gap when the cholesteric director is fully oriented along the helix 
axes. This effect is a consequence of the presence of optical axis in the locally anisotropic 
material forming the sample, which in turn originates the existence of a pseudoisotropic 
curve. In this section we explore the optical properties around this curve and its effect over 
the dwell time by means of the analytical results for normal incidence. The enhancement of 
the dwell time is desirable for optical application, hence, the conditions in which this occurs 
shall widely explored (Mota et al., 2010). Finally, the mechanical tuning of two or more 
defect modes in the cholesteric elastomer is explored by taking into account the coupling 
and interference among the various defect modes. 

6.2.1 Singlets 

We consider now a sample between the planes z = − and z = + with only one twist defect 

at 0z = , which divides the sample in two regions referred to as a for 0z < and b for 0z > . Next, 

we approach the problem quantitatively by means of exact equations for normal incidence. 
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Fig. 3. Co-polarized reflectance RRR versus the wavelength λ and the incidence angleθ for 

the elongations 1η = and mη η= . 

 

 

Fig. 4. Co-polarized transmittances RRT and reflectances RRR as a function of the 

wavelength λ and the axial elongationη for normal incidence. 

6.2.1.1 Thick samples 

Let us first consider an unbounded structure, i.e., the limit l → ∞ . Any solution of Maxwell 

equations can be written as ( ) ( ) ( ) ( ) ( )a bz z z z z= Θ + Θ −β β β , where ( )zΘ is the Heaviside 

step function and ( ) ( )k k kz z= Tβ α  ( ,k a b= ) is a linear combination of the eigenwaves 

exp( )j
jk in zt defined above in Eq. (1.48). Again, we mention that the choice of vector kα is the 

same as expressed in (1.29). The eigenvectors j
at and j

bt are given by Eq. (1.49) in two different 

frames a and b whose axes 2 2,a bx x make an angle ξ . In a frame having as axis 2x the bisector 
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of 2 2,a bx x , such vectors are obtained by applying the rotation matrices  ( / 2)ξ−  and 

( / 2)ξ to the vectors jt defined by Eq. (1.49). The corresponding matrices aT and bT are 

therefore given by 

 

 

        ( / 2). , ( / 2 . )a bξ ξ= − =T T T T  . (1.54) 

 
 

In the limit → ∞ the exponential factors of the first component of 1
a a a

−= Tα .β and of the 

third component of 1
b b b

−= Tα .β  (corresponding to the eigenwaves 1+ in the region a and 1− in 

the region b ), diverge for z going to −∞ and +∞ , respectively. Their amplitude must 

therefore be zero. The tangential continuity of the vectors e and h at 0z = , give four 

homogeneous equations for the other six components. It is found that the amplitude of the 

evanescent modes is much larger than that of the propagating ones at the defect 

frequency dω and the defect mode has approximately the profile exp( / )dz l− whose line 

width is 11 / ( )d dl n ω≡  (Becchi et al., 2004). 

Particularly, if the twist angle is / 2π , the frequency of the peak created by this defect in the 

middle of the circular Bragg regime is: 1 2

2
d

ω ω
ω

+
≡ whose band width is 1 2dω ω ωΔ ≡ − . 

Also, the angle ( )em dγ ω between the electric and magnetic field of the evanescent modes at 

the defect frequency, may be obtained from the components of their corresponding 
eigenvectors given by expressions (1.49). 

Thus, the defect frequency depends on the axial elongationη and the fractional shape 

anisotropy r as 

 

 

 01 2 1 1
( , )

2 ( , )
d

cq
r

r

ω ω
ω η

η η⊥

 +  = = +    
, (1.55) 

 

where c is the speed of light in vacuum and ( , )rη is given by Eq. (1.47), and the defect 

wavelength 2 /c dcλ π ω= at the center of the bandgap is given by Eq. (1.53). Fig. 5 

shows cλ versus the axial elongationη and fractional shape anisotropy r . It shows 

that cλ redshifts by enlarging bothη and r for oblate (a) and prolate materials (b) which 

allows the possibility of mechanically tune the defect mode. 

In Fig. 6 the inverse line width 1
dl
− , band width dωΔ , angle between the electric and magnetic 

field of the evanescent modes at the defect frequency ( )em dγ ω are plotted in different scales 

versusη and r . In this figure we observe a locus where 1,  M dlη η −=  ( dl diverges), dωΔ  and 

( )em dγ ω vanish.  In this locus the attenuation for the defect mode is null since 1 0dl
− = , the 

circular Bragg regime closes 0dωΔ = , and the Poynting vector is null since ( ) 0em dγ ω = . We 

shall call this curve in the rη − space the pseudoisotropic curve. 
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Fig. 5. Defect wavelength dλ versusη and r for a) oblate ( 0 1r< < ) and b) ( 1r > ) prolate    

cholesteric elastomers axially elongated. Other parameters are, / 2 214 p nm= , 1.91⊥ = , 

2.22= . These correspond to a typical cholesteric elastomer. 

 

 

Fig. 6. Line width 1( )d dl ω− , band width ωΔ and angle between magnetic and electric field 

( )em dγ ω for the evanescent mode versusη and r . a) Oblate and b) prolate cholesteric 

elastomers. For the same system as Fig. 3. 
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This slab of cholesteric elastomer with a twist defect has potential optical applications as, for 
instance, Fabry-Perot resonators in lasers, hence, the enhancement of the photonic dwell 
time is very attractive. On the other hand, Kopp and Genack have shown that the photonic 
dwell time saturates versus thickness of the slab after a certain crossover thickness. It has 
been shown (Espinosa-Ortega & Reyes, 2008) that the deformation of the elastomer may 
close the band gap when the cholesteric director is fully oriented along the helix axis. This 
effect is a consequence of the presence of optical axis in the locally anisotropic material 
forming the elastomer, which in turn originates the existence of a pseudoisotropic curve 
(Abdulhalim, 1999). We carefully review the implications of the existence of a 
pseudoisotropic curve in the physical system and its effect over the photonic dwell time. 

Above, it was shown that the cholesteric elastomer with a twist defect presents a 

pseudoisotropic curve where Mη η= , the line width ( dl ) diverges and the band width ( dωΔ ) 
and angle between the electric and magnetic field ( ( )em dγ ω ), at the frequency defect, are 

null. 

Therefore, for values of the axial elongationη and the fractional shape anisotropy r on the 

pseudoisotropic curve the following facts are found (Mota et al., 2010): 
i. the transport of waves within the sample having the defect frequency is much more 

efficient since the attenuation for the defect mode is null, 1 0dl
− = , 

ii. the circular Bragg regime closes since 0dωΔ = , 

iii. there are no energy leaks in the sample since ( ) 0em dγ ω = amounts to a null Poynting 

vector. 

It is worth mentioning that a pseudoisotropic curve in the rη − space can be found when 

Mη η=  (Mota et al., 2010) with the same implications. 

On the other hand, the photonic dwell timeτ of this defect mode is given by the ratio 

between the electromagnetic energy stored by the sample and the total power of the 

outgoing waves. By neglecting the contribution of the propagating waves to the stored 

energy the dwell time dependent on the thickness of the slab, l , is found ( )lτ as 

 
2

1 exp( 2 / )
( ) (2 ) / 3

4 sin ( / 2) exp( 2 / )
d d

em d

l l l
l

c l l
τ

γ
⊥

− −
≡ +

+ −
   (1.56) 

whose asymptotic value for a very large sample is 

 2( ) ( /(4 sin ( / 2))) (2 ) / 3d eml cτ γ ⊥∞ = +   . (1.57) 

If, however, the CE is tuned on the pseudo-isotropic curve, ( )lτ reduces to 

 ( ) ( / 2 ) (2 ) / 3l l cτ ⊥= +   , (1.58) 

which now depends proportionally on the sample thickness and hence never gets bounded 
as it occurs for a point outside of the mentioned curve. Hence, the photon dwell time can be 

prolonged without limit by enlarging the sample thickness l , that opposes the behaviour 

reported by Kopp and Genak for cholesteric liquid crystals (Kopp & Genack, 2002). 

In Fig. 7 it is depicted the inverse relative line width dτω at the defect frequency 

(dimensionless dwell time) which is proportional to the dwell timeτ , versus the sample 
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thickness l andη for a) an oblate, 0.5r = , and b) a prolate, 1.16r = cholesteric elastomer, with 

wave number 9 1
0 /(214 10 ) q mπ − −= ×  and shows how a sharp protrusion increases its 

amplitude around the pseudoisotropic curve, whereas the other points in the l η− plane 

remains at the smaller value of 7~ 10dτω . It is worth mentioning that the density of photonic 

states D at the defect frequency (Ashcroft & Mermin, 1976): 1( ) ( ) /d dD l nω ω ω≡ ∂ ∂  can be 

analytically obtained from Eq. (1.49). It is easy to show that ( )dD ω diverges at the pseudo-

isotropic curve. Moreover, a similar behaviour in the dwell time, around the 

pseudoisotropic curve, is found when it is plotted versus the axial elongation and the wave 

number for an oblate and a prolate cholesteric elastomer (Mota et al., 2010). 
Therefore, a slab of cholesteric elastomer presents a pseudoisotropic curve where the 

propagation of waves in the sample with the defect frequency is extremely efficient since the 

attenuation for the defect mode is quite small, and the energy loses in the sample are 

negligible due to an almost vanishing Poynting vector. These facts support the following 

main results: around a pseudoisotropic curve the behaviour of the photonic dwell time has a 

tremendous variation and the density of photonic states diverges there. 

 

 

Fig. 7. dτω versus ( )l m andη . For a) an oblate ( 0.5r = ) and b) a prolate ( 1.16r = ) cholesteric 

elastomer. For the same system as Fig. 3. 
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6.2.1.2 Thin samples 

When the thickness 2l  of the sample is comparable with the attenuation length dl of the 

modes 1± , all the eigenwaves can reach the defect plane. According to the transfer matrix 

method seen above, we consider first the transfer matrixU , which is, implicitly defined by 

the equation (0 ) ). (0b a
+ −=Uα α . Taking into account Eq. (1.54), the relation = T.β α , and the 

continuity of ( )zβ at the defect site 0z = , one obtains: 

 ( ) 10 ,0 exp. ( ). cos sin Sξ ξ ξ+ − −= = − ≡ −T RU T RU 1I , (1.59) 

where 1
S

−=R T .R.T . Straightforward calculations give 

 

1 5 3 5

5 2 5 4

3 5 1 5

5 4 5 2

S

r r r r

ir ir ir ir

r r r r

ir ir ir ir

∗

∗

∗

∗

 − − −  − − −
=  

−  
− − 

R , (1.60) 

where the quantities jr  ( 1,...,5j = ) are 

2 2 2 2
1,3 1 1 1 1 1 1

2 2 2 2
2,4 2 2 2 2 2 2

2 2
5 1 2 1 2 1 2 1 2 1 2 1 2

4 [ ( ) (4 ) ( (4 ))],

4 [ ( ) (4 ) ( (4 ))],

4 ( ) ( 2 ( )) 2 ( ( ) (8 )) .

m m m

m m m

m m m

r q c u u n u q u

r q c u u n u q u

r q c c u u u u in n u u q u u

λ π η π λ π

λ π η π λ π

λ η π λ π

= + + +

= ± + + ± +

 = + + + + + + + 







     

    

    

 (1.61) 

It is convenient to write the 4 4× matrixU in the form (1.30) and to consider also the 

matrix 1 cos sin Sξ ξ− ≡ +U R1I . The 2 2× submatrix bbS is the inverse of 1( )bb
−U , that is given 

by 

 2 51

5 1

cos sin sin
( )

sin cos sinbb

ir r

ir r

ξ ξ ξ

ξ ξ ξ
− − − 

=  
+ U . (1.62) 

As mentioned above, four eigenmodes from region a  (or b ) reach the defect plane. Thus, the 

scattering matrix bbS it relates the amplitudes of backward waves in region a  (the 

transmitted ones) to the backward waves from region b  (the incident ones). 

It is found numerically that, for dλ λ= the eigenwave 2− impinging from region b is totally 

reflected at the defect plane. This means that the element (2,2) of bbS is equal to zero. 

Therefore, the quantity dλ is implicitly defined by the equation 

 [ ]1
1cot ( )drξ λ−= − , (1.63) 

which is completely equivalent to expression (1.55) for the particular case / 2ξ π= . 

On the other hand, it is found that, for dλ λ= the eigenwave 1− in region b generates at the 

other side of the layer an eigenwave 1− with a huge amplitude. 
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Fig. 8. Square amplitudes of the elements (3,3) and (4,4) of the scattering matrix S . Here, 

/ 2θ π= , 2.22,  1.91,  428 ,  1 and 1.16.p nm rη⊥= = = = =   

6.2.2 Doublets 

Now, we consider an unbounded sample with two identical twist defects at 0z = and 1z z= . 

The transfer matrix relating the −α vectors at 0z −= and 1z z+= is given by 

 ( ) ( )( )1 1 1 1,0 expz i z+ −= =U U U UN , (1.64) 

where 1U is the transfer matrix for each one of the defect planes, given by (1.59), andN is the 

diagonal matrix with diagonal elements equal to jn . The matrix ( )1exp i zN is the transfer 

matrix ( )1 ,0z− +U of the layer between the two twist defects. 

The analysis presented in previous section is also valid for obtaining the transmittances and 

reflectances. The curves giving these quantities are quite similar to the corresponding for a 

single twist defect, except for the fact that they have the structure of a doublet with two 

defect frequencies 1 2,d dλ λ . The curves (3,3) and (4,4) giving the transmittance for the 

eigenmodes 1 and 2 are plotted in Fig. 8. 

As show the plot 8 there exist two defect frequencies 1 2,d dλ λ for which the eigenwave 

2− impinging from right side is totally reflected at the defect planes. This means that the 

element (2,2) of bbS is equal to zero. Therefore, the quantity dλ is implicitly defined by  

 1 1 2 1 22 / ( 1/ ) ( 1/ )1 2 2 2
3 5 5 1cot d d dz l z in l z in lr e ir e ir e rξ − − + − − +− ∗ = − + −   . (1.65) 

Notice that the square root terms act here as perturbing terms whose asymptotic values 

vanish   for 1 dz l  and   expression  (1.65)  becomes   identical  to  (1.63).  When  1 dz l   the 

components peaked at 0z = and 1z z= do not have “interaction” between them and they act 

independently. Thus, the defect modes become degenerated, since 2 1d d dλ λ λ== .  By solving 

the Eq. (1.65) we can obtain a 3D plot of the difference 2 1d d dλ λ λΔ = − as function of shear 

strainη and fractional shape anisotropy r for three values of defect separation 1z . In Fig. 9 it 

can be seen that the difference dλΔ of the defect frequencies vanish along the 

pseudoisotropic curve for any value of dl and goes to zero as 1z  gets much bigger than dl ; 

under this conditions 2 1d d dλ λ λ== . On the other side, notice how, at a fixed value r , 
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dλΔ reaches its maximum value at 1η = and its minimum one at the pseudoisotropic locus; 

this fact suggests the possibility of mechanically tune the two defect modes and the 

interaction between them by controllingη . 

Before ending this section we mention that for both, oblate and prolate cholesteric 

elastomers, the defect frequencies redshift asη and r augment (curves are not shown). 
 

 
 

 
 

Fig. 9. Plot of the difference 2 1d d dλ λ λΔ = − as function of shear strainη and fractional shape 

anisotropy r for a) oblate and b) prolate cholesteric elastomers. The parameter values are the 

same as Fig. 8. 
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Fig. 10. Square amplitudes of the elements (3,3) and (4,4) of the scattering matrix S . Here, 

/ 2θ π= , 2.22,  1.91,  428 ,  1 and 1.16.p nm rη⊥= = = = =    

6.2.3 Multiplets 

The equation giving the transfer matrix for 0n identical and equidistant twist defects 

at 1z nz= , where 00,1,2,..., 1n n= − , can be written as 

 ( ) ( )( ) 0 1

0 1 1 1 1( 1) ,0 exp .
n

n z i z
−+ −  = − =  UNU U U  (1.66) 

For 0 2n = , Eq. (1.66) becomes identical to equation (1.64). The square amplitudes of the 

elements (3,3) and (4,4) of the scattering matrix are plotted in Fig. 10 for 3N = , /2ξ π=  and 

1 dz l= .  

The figure shows three different twist defects at the wavelengths 1 2 3,,d d dλ λ λ , where 2dλ is 

nearly equal to the average value of 1 3,d dλ λ . At the defect frequencies, the structure reflects 

totally the eigenwave 2. Also, it is shown that, at the defect frequencies, the eigenwave 1− in 

region b generates at the other side of the layer an eigenwave 1− with a huge amplitude. 
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