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1. Introduction

In this paper we investigate the problem of scattering and generation of waves on an isotropic,
non-magnetic, linearly polarised (E-polarisation), non-linear, layered, cubically polarisable,
dielectric structure, which is excited by a packet of plane waves, in the range of resonant
frequencies. We consider wave packets consisting of both strong electromagnetic fields at the
excitation frequency, leading to the generation of waves, and of weak fields at the multiple
frequencies, which do not lead to the generation of harmonics but influence on the process of
scattering and generation of waves. The analysis of the quasi-homogeneous electromagnetic
fields of the non-linear dielectric layered structure made it possible to derive a condition
of phase synchronism of waves. If the classical formulation of the mathematical model is
supplemented by this condition of phase synchronism, we arrive at a rigorous formulation
of a system of boundary-value problems with respect to the components of the scattered and
generated fields (see Angermann & Yatsyk (2011)). This system is transformed to equivalent
systems of non-linear problems, namely a system of one-dimensional non-linear Fredholm
integral equations of the second kind and a system of non-linear boundary-value problems
of Sturm-Liouville type. The numerical algorithms of the solution of the non-linear problems
are based on iterative procedures which require the solution of a linearised system in each
step. In this way the approximate solution of the non-linear problems is described by means
of solutions of linearised problems with an induced dielectric permeability. The analytical
continuation of these problems into the region of complex values of the frequency parameter
allows us to switch to the analysis of spectral problems. The corresponding eigen-frequencies
form a discrete, countable set of points, with the only possible accumulation point at infinity,
and lie on a complex two-sheeted Riemann surface. In the frequency domain, the resonant
scattering and generation properties of non-linear structures are determined by the proximity
of the excitation frequencies of the non-linear structures to the complex eigen-frequencies
of the corresponding homogeneous linear spectral problems with the induced non-linear
dielectric permeability of the medium.
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Results of calculations of characteristics of the scattered field of a plane wave are presented,
taking into account the third harmonic generated by non-linear cubically polarisable layers
with both negative as well as positive values of the cubic susceptibility of the medium.
Within the framework of the closed system, which is given by a system of self-consistent
boundary-value problems, we show the following. The variation of the imaginary part of the
permittivity of the layer at the excitation frequency can take both positive and negative values
along the height of the non-linear layer. It is induced by the non-linear part of the permittivity
and is caused by the loss of energy in the non-linear medium (at the frequency of the incident
field), which is spent for the generation of the electromagnetic field of the third harmonic (at
the triple frequency). The magnitude of this variation is determined by the amplitude and
phase characteristics of the fields which are scattered and generated by the non-linear layer.
It is shown that layers with negative and positive values of the coefficient of cubic
susceptibility of the non-linear medium have fundamentally different scattering and
generation properties in the range of resonance. For instance, in the case of negative values
of the susceptibility, a decanalisation of the electromagnetic field can be detected. With
the increase of intensity of the incident field, the maximal variations of the reflection and
transmission coefficients can be observed in the vicinity of the normal incidence of the plane
wave. A previously transparent structure becomes semi-transparent, and the reflection and
transmission coefficients become comparable. For the layer considered here, the maximal
portion of the total energy generated in the third harmonic is observed in the direction normal
to the structure and amounts to 3.9% of the total dissipated energy. For a layer with a positive
value of the susceptibility an effect of energy canalisation is observed. The increase of intensity
of the incident field leads to an increase of the angle of transparancy which increasingly
deviates from the direction normal to the layer and which is responsible for a reflection
coefficient close to zero. In this case, the maximal portion of energy generated in the third
harmonic is observed near the angle of transparency of the non-linear layer. In the numerical
experiments there have been reached intensities of the excitation field of the layer such that
the relative portion of the total energy generated in the third harmonic is 36%. The paper also
presents results of numerical calculations that describe properties of the non-linear dielectric
permeabilities of the layers as well as their scattering and generation characteristics. The
tests are illustrated by figures showing the dependence on the amplitudes and the angles of
incidence of the plane wave for layers with negative and positive values of the coefficient of
the cubic susceptibility of the non-linear medium.

2. Maxwell equations and wave propagation in non-linear media with cubic

polarisability

In this section we give a short overview on the derivation of the mathematical model. A more
detailed explanation can be found in Angermann & Yatsyk (2011). Electrodynamical wave
phenomena in charge- and current-free media can be described by the Maxwell equations

∇× E = −1

c

∂B

∂t
, ∇× H =

1

c

∂D

∂t
, ∇ · D = 0, ∇ · B = 0. (1)

Here E = E(r, t), H = H(r, t), D = D(r, t) and B = B(r, t) denote the vectors of electric
and magnetic field intensities, electric displacement, and magnetic induction, respectively,
and (r, t) ∈ R3 × (0, ∞). The symbol ∇ represents the formal vector of partial derivatives

w.r.t. the spatial variables, i.e. ∇ := (∂/∂x, ∂/∂y, ∂/∂z)⊤ , where the symbol ·⊤ denotes the
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transposition. In addition, the system (1) is completed by the material equations

D = E + 4πP, B = H + 4πM, (2)

where P and M are the vectors of the polarisation and magnetic moment, respectively.
In the present paper, the non-linear medium under consideration is located in an infinite plate
of thickness 4πδ, where δ > 0 is a given parameter: {r = (x, y, z)⊤ ∈ R3 : |z| ≤ 2πδ}.
As in the books Akhmediev & Ankevich (2003), Kivshar & Agrawal (2005) and Miloslavsky
(2008), the investigations will be restricted to non-linear media without dispersion (cf.
Agranovich & Ginzburg (1966)), i.e. we use the following expansion of the polarisation vector
in terms of the electric field intensity:

P = χ
(1)E + (χ(2)E)E + ((χ(3)E)E)E + . . . , (3)

where χ
(1), χ(2), χ(3) are the media susceptibility tensors of rank one, two and three, with

components {χ
(1)
ij }3

i,j=1, {χ
(2)
ijk }3

i,j,k=1 and {χ
(3)
ijkl}3

i,j,k,l=1, respectively (see Butcher (1965)). In

the case of media which are invariant under the operations of inversion, reflection and
rotation, in particular of isotropic media, the quadratic term disappears.

It is convenient to split P into its linear and non-linear parts as P = P(L) + P(NL) := χ
(1)E +

P(NL). Similarly, with ε := I + 4πχ
(1) and D(L) := εE, where I denotes the identity in C3, the

displacement field in (2) can be decomposed as

D = D(L) + 4πP(NL). (4)

ε is the linear term of the permittivity tensor. Furthermore we assume that the media are
non-magnetic, i.e M = 0, so that

B = H (5)

by (2). Resolving the equations (1), (4) and (5) w.r.t. H, a single vector-valued equation results:

∇2E −∇(∇ · E)− 1

c2

∂2

∂t2
D(L) − 4π

c2

∂2

∂t2
P(NL) = 0. (6)

In addition, if the media under consideration are isotropic and transversely inhomogeneous

w.r.t. z, i.e. ε = ε(L)I with a scalar, possibly complex-valued function ε(L) = ε(L)(z), if the
wave is linearly E-polarised, i.e. E = (E1, 0, 0)⊤, H = (0, H2, H3)

⊤, and if the electric field
E is homogeneous w.r.t. the coordinate x, i.e. E(r, t) = (E1(t; y, z), 0, 0)⊤, then equation (6)
simplifies to

∇2E − ε(L)

c2

∂2

∂t2
E − 4π

c2

∂2

∂t2
P(NL) = 0, (7)

where ∇2 reduces to the Laplacian w.r.t. y and z, i.e. ∇2 := ∂2/∂y2 + ∂2/∂z2.
The stationary problem of the diffraction of a plane electromagnetic wave (with oscillation
frequency ω > 0) on a transversely inhomogeneous, isotropic, non-magnetic, linearly
polarised, dielectric layer filled with a cubically polarisable medium (see Fig. 1) is studied in
the frequency domain (i.e. in the space of the Fourier amplitudes of the electromagnetic field),
taking into account the multiple frequencies sω, s ∈ N, of the excitation frequency generated
by non-linear structure, where a time-dependence of the form exp(−isωt) is assumed. The
transition between the time domain and the frequency domain is performed by means of
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Fig. 1. The non-linear dielectric layered structure

direct and inverse Fourier transforms:

F̂(r, ω̂) =
∫

R

F(r, t)eiω̂tdt, F(r, t) =
1

2π

∫

R

F̂(r, ω̂)e−iω̂tdω̂,

where F is one of the vector fields E or P(NL). Applying formally the Fourier transform to
equation (7), we obtain the following representation in the frequency domain:

∇2Ê(r, ω̂) +
ε(L)ω̂2

c2
Ê(r, ω̂) +

4πω̂2

c2
P̂(NL)(r, ω̂) = 0. (8)

A stationary (i.e. ∼ exp(−iω̂t)) electromagnetic wave propagating in a weakly non-linear
dielectric structure gives rise to a field containing all frequency harmonics (see Sukhorukov
(1988), Vinogradova et al. (1990)). Therefore, the quantities describing the electromagnetic
field in the time domain subject to equation (7) can be represented by means of the Fourier
series

F(r, t) =
1

2 ∑
n∈Z

F(r, nω)e−inωt, F ∈ {E, P(NL)}. (9)

Applying to (9) the Fourier transform, we obtain

F̂(r, ω̂) =
1

2

∫

R
∑

n∈Z

F(r, nω)e−inωteiω̂tdt =

√
2π

2
F(r, nω)δ(ω̂, nω), F ∈ {E, P(NL)}, (10)

where δ(s, s0) := 1√
2π

∫

R
ei(s−s0)tdt is the Dirac delta-function located at s = s0.

Substituting (10) into (8), we obtain an infinite system of coupled equations w.r.t. the Fourier
amplitudes of the electric field intensities of the non-linear structure in the frequency domain:

∇2E(r, sω) +
ε(L)(sω)2

c2
E(r, sω) +

4π(sω)2

c2
P(NL)(r, sω) = 0, s ∈ Z. (11)

In the case of a three-component E-polarised electromagnetic field

E(r, sω) = (E1(sω; y, z), 0, 0)⊤, H(r, sω) = (0; H2(sω; y, z), H3(sω; y, z))⊤, (12)

the system (11) reduces to a system of scalar equations w.r.t. E1:

∇2E1(r, sω) +
ε(L) (sω)2

c2
E1(r, sω) +

4π (sω)2

c2
P
(NL)
1 (r, sω) = 0, s ∈ N. (13)
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In writing equation (13), the property E1(r; jω) = E1(r;−jω) of the Fourier coefficients and
the lack of influence of the static electric field E1(r, sω)|s=0 = 0 on the non-linear structure
were taken into consideration.
We assume that the main contribution to the non-linearity is introduced by the term

P(NL)(r, sω) (cf. Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007),
Angermann & Yatsyk (2008), Yatsyk (2006), Schürmann et al. (2001), Smirnov et al. (2005),
Serov et al. (2004)), and we take only the lowest-order terms in the Taylor series expansion

of the non-linear part P(NL)(r, sω) =
(

P
(NL)
1 (r, sω), 0, 0

)⊤
of the polarisation vector in the

vicinity of the zero value of the electric field intensity, cf. (3). In this case, the only non-trivial
component of the polarisation vector is determined by susceptibility tensor of the third order

χ
(3). In the time domain, this component can be represented in the form (cf. (3) and (9)):

P
(NL)
1 (r, t)

·
=

1

8 ∑
{

n,m,p,s∈Z\{0}
n+m+p=s

χ
(3)
1111(sω; nω, mω, pω)E1(r, nω)E1(r, mω)E1(r, pω)e−isωt,

(14)

where the symbol
·
= means that higher-order terms are neglected. Applying to (14) the Fourier

transform w.r.t. time, we obtain an expansion in the frequency domain:

P
(NL)
1 (r, sω) =

1

4 ∑
j∈N

3χ
(3)
1111(sω; jω,−jω, sω)|E1(r, jω)|2E1(r, sω)

+
1

4 ∑
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n,m,p∈Z\{0}
n �=−m, p=s
m �=−p, n=s
n �=−p, m=s
n+m+p=s

χ
(3)
1111(sω; nω, mω, pω)E1(r, nω)E1(r, mω)E1(r, pω).

(15)

We see that, under the above assumptions, the electromagnetic waves in a non-linear
medium with a cubic polarisability are described by an infinite system (13)&(15) of coupled
non-linear equations (Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk
(2007), Angermann & Yatsyk (2010)). In what follows we will consider the equations in the
frequency space taking into account the relation κ = ω

c .
Here we study non-linear effects involving the waves at the first three frequency components
of E1 only. That is, we further neglect the influence of harmonics of order higher than 3.
Then it is possible to restrict the examination of the system (13)&(15) to three equations, and
also to leave particular terms in the representation of the polarisation coefficients. Taking
into account only the non-trivial terms in the expansion of the polarisation coefficients and

using the so-called Kleinman’s rule (i.e. the equality of all the coefficients χ
(3)
1111 at the multiple

frequencies, Kleinman (1962), Miloslavsky (2008)), we arrive at the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇2E1(r, κ) + ε(L)κ2E1(r, κ) + 4πκ2
(

P
(PSM)
1 (r, κ) + P

(GC)
1 (r, κ)

)

= −4πκ2P
(G)
1 (r, κ),

∇2E1(r, 2κ) + ε(L)(2κ)2E1(r, 2κ) + 4π(2κ)2
(

P
(PSM)
1 (r, 2κ) + P

(GC)
1 (r, 2κ)

)

= 0,

∇2E1(r, 3κ) + ε(L)(3κ)2E1(r, 3κ) + 4π(3κ)2P
(PSM)
1 (r, 3κ) = −4π(3κ)2P

(G)
1 (r, 3κ),

(16)
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where

P
(PSM)
1 (r, nκ) :=

3

4
χ
(3)
1111(|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2)E1(r, nκ), n = 1, 2, 3,

P
(GC)
1 (r, κ) :=

3

4
χ
(3)
1111

[

E1(r, κ)
]2

E1(r, κ)
E1(r, 3κ)E1(r, κ), P

(G)
1 (r, κ) :=

3

4
χ
(3)
1111E2

1(r, 2κ)E1(r, 3κ),

P
(GC)
1 (r, 2κ) :=

3

4
χ
(3)
1111

E1(r, 2κ)

E1(r, 2κ)
E1(r, κ)E1(r, 3κ)E1(r, 2κ),

P
(G)
1 (r, 3κ) :=

3

4
χ
(3)
1111

{

1

3
E3

1(r, κ) + E2
1(r, 2κ)E1(r, κ)

}

.

The terms P
(PSM)
1 (r, nω) are usually called phase self-modulation (PSM) terms (cf. Akhmediev

& Ankevich (2003)). The permittivity of the non-linear medium filling a layer (see Fig. 1) can
be represented as

εnκ = ε(L) + ε
(NL)
nκ for |z| ≤ 2πδ . (17)

Outside the layer, i.e. for |z| > 2πδ, εnκ = 1. The linear and non-linear terms of the permittivity
of the layer are given by the coefficients at (nκ)2E1(r, nκ) in the second and third addends in

each of the equations of the system, respectively. Thus ε(L) = D
(L)
1 (r, nκ)/E1(r, nκ) = 1 +

4πχ
(1)
11 , where the representations for the linear part of the complex components of the electric

displacement D
(L)
1 (r, nκ) = E1(r, nκ) + 4πP

(L)
1 (r, nκ) = ε(L)E1(r, nκ) and the polarisation

P
(L)
1 (r, nκ) = χ

(1)
11 E1(r, nκ) are taken into account. Similarly, the third term of each equation

of the system makes it possible to write the non-linear component of εnκ in the form

ε
(NL)
nκ = α(z)

[

|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2

+ δn1

[

E1(r, κ)
]2

E1(r, κ)
E1(r, 3κ) + δn2

E1(r, 2κ)

E1(r, 2κ)
E1(r, κ)E1(r, 3κ)

]

,
(18)

where α(z) := 3πχ
(3)
1111(z) is the so-called function of cubic susceptibility. For transversely

inhomogeneous media (a layer or a layered structure), the linear part ε(L) = ε(L)(z) = 1 +

4πχ
(1)
11 (z) of the permittivity is described by a piecewise smooth or even a piecewise constant

function. Similarly, the function of the cubic susceptibility α = α(z) is also a piecewise smooth
or even a piecewise constant function. This assumption allows us to investigate the diffraction
characteristics of a non-linear layer and of a layered structure (consisting of a finite number of
non-linear dielectric layers) within one and the same mathematical model.
Here and in what follows we use the following notation: (r, t) are dimensionless
spatial-temporal coordinates such that the thickness of the layer is equal to 4πδ. The
time-dependence is determined by the factors exp(−inωt), where ω := κc is the
dimensionless circular frequency and κ is a dimensionless frequency parameter such that
κ = ω/c := 2π/λ. This parameter characterises the ratio of the true thickness h of the layer
to the free-space wavelength λ, i.e. h/λ = 2κδ. c = (ε0μ0)

−1/2 denotes a dimensionless
parameter, equal to the absolute value of the speed of light in the medium containing the
layer (Im c = 0). ε0 and μ0 are the material parameters of the medium. The absolute values of
the true variables r′, t′, ω′ are given by the formulas r′ = hr/4πδ, t′ = th/4πδ, ω′ = ω4πδ/h.
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3. Quasi-homogeneous electromagnetic fields in a transversely inhomogeneous

non-linear dielectric layered structure and the excitation by wave packets

The scattered and generated field in a transversely inhomogeneous, non-linear dielectric
layer excited by a plane wave is quasi-homogeneous along the coordinate y, hence it can be
represented as

(C1) E1(r, nκ) =: E1(nκ; y, z) := U(nκ; z) exp(iφnκy), n = 1, 2, 3.

Here U(nκ; z) and φnκ := nκ sin ϕnκ denote the complex-valued transverse component of the
Fourier amplitude of the electric field and the value of the longitudinal propagation constant
(longitudinal wave-number) at the frequency nκ, respectively, where ϕnκ is the given angle of
incidence of the exciting field of frequency nκ (cf. Fig. 1).
Furthermore we require that the following condition of the phase synchronism of waves is satisfied:

(C2) φnκ = nφκ , n = 1, 2, 3.

Then the permittivity of the non-linear layer can be expressed as

εnκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))
= εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))

= ε(L)(z) + α(z)
[

|U(κ; z)|2 + |U(2κ; z)|2 + |U(3κ; z)|2
+ δn1|U(κ; z)||U(3κ; z)| exp {i [−3arg(U(κ; z)) + arg(U(3κ; z))]}
+ δn2|U(κ; z)||U(3κ; z)| exp {i [−2arg(U(2κ; z)) + arg(U(κ; z)) + arg(U(3κ; z))]}

]

,
n = 1, 2, 3.

(19)

For the the components of the non-linear polarisation P
(G)
1 (r, nκ) (playing the role of the

sources generating radiation in the right-hand sides of the system (16)) we have that

−4πκ2P
(G)
1 (r, κ) = −α(z)κ2U2(2κ; z)U(3κ; z) exp(iφκy),

−4π(3κ)2P
(G)
1 (r, 3κ) = −α(z)(3κ)2

{

1

3
U3(κ; z) + U2(2κ; z)U(κ; z)

}

exp(iφ3κy).

A more detailed explanation of the condition (C2) can be found in (Angermann & Yatsyk,
2011, Sect. 3). In the considered case of spatially quasi-homogeneous (along the coordinate y)
electromagnetic fields (C1), the condition of the phase synchronism of waves (C2) reads as

sin ϕnκ = sin ϕκ , n = 1, 2, 3.

Consequently, the given angle of incidence of a plane wave at the frequency κ coincides with
the possible directions of the angles of incidence of plane waves at the multiple frequencies
nκ. The angles of the wave scattered by the layer are equal to ϕscat

nκ = −ϕnκ in the zone of
reflection z > 2πδ and ϕscat

nκ = π + ϕnκ and in the zone of transmission of the non-linear layer
z < −2πδ, where all angles are measured counter-clockwise in the (y, z)-plane from the z-axis
(cf. Fig. 1).
The conditions (C1), (C2) allow a further simplification of the system (16). Before we do so,
we want to make a few comments on specific cases which have already been discussed in the
literature. First we mention that the effect of a weak quasi-homogeneous electromagnetic field
(C1) on the non-linear dielectric structure such that harmonics at multiple frequencies are not
generated, i.e. E1(r, 2κ) = 0 and E1(r, 3κ) = 0, reduces to find the electric field component
E1(r, κ) determined by the first equation of the system (16). In this case, a diffraction problem
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for a plane wave on a non-linear dielectric layer with a Kerr-type non-linearity εnκ = ε(L)(z) +
α(z)|E1(r, κ)|2 and a vanishing right-hand side is to be solved, see Angermann & Yatsyk
(2008); Kravchenko & Yatsyk (2007); Serov et al. (2004); Shestopalov & Yatsyk (2007); Smirnov
et al. (2005); Yatsyk (2006; 2007). The generation process of a field at the triple frequency 3κ by
the non-linear dielectric structure is caused by a strong incident electromagnetic field at the
frequency κ and can be described by the first and third equations of the system (16) only. Since
the right-hand side of the second equation in (16) is equal to zero, we may set E1(r, 2κ) = 0
corresponding to the homogeneous boundary condition w.r.t. E1(r, 2κ). Therefore the second
equation in (16) can be completely omitted, see Angermann & Yatsyk (2010).
A further interesting problem consists in the investigation of the influence of a packet of waves
on the generation of the third harmonic, if a strong incident field at the basic frequency κ and,
in addition, weak incident quasi-homogeneous electromagnetic fields at the double and triple
frequencies 2κ, 3κ (which alone do not generate harmonics at multiple frequencies) excite the
non-linear structure. The system (16) allows to describe the corresponding process of the
third harmonics generation. Namely, if such a wave packet consists of a strong field at the
basic frequency κ and of a weak field at the triple frequency 3κ, then we arrive, as in the
situation described above, at the system (16) with E1(r, 2κ) = 0, i.e. it is sufficient to consider
the first and third equations of (16) only. For wave packets consisting of a strong field at
the basic frequency κ and of a weak field at the frequency 2κ, (or of two weak fields at the
frequencies 2κ and 3κ) we have to take into account all three equations of system (16). This
is caused by the inhomogeneity of the corresponding problem, where a weak incident field at
the double frequency 2κ (or two weak fields at the frequencies 2κ and 3κ) excites (resp. excite)
the dielectric medium.
So we consider the problem of scattering and generation of waves on a non-linear, layered,
cubically polarisable structure, which is excited by a packet of plane waves consisting of
a strong field at the frequency κ (which generates a field at the triple frequency 3κ) and of
weak fields at the frequencies 2κ and 3κ (having an impact on the process of third harmonic
generation due to the contribution of weak electromagnetic fields)

{

Einc
1 (r, nκ) := Einc

1 (nκ; y, z) := ainc
nκ exp

(

i
(

φnκy − Γnκ(z − 2πδ)
)

)}3

n=1
, z > 2πδ , (20)

with amplitudes ainc
nκ and angles of incidence ϕnκ , |ϕ| < π/2 (cf. Fig. 1), where φnκ :=

nκ sin ϕnκ are the longitudinal propagation constants (longitudinal wave-numbers) and

Γnκ :=
√

(nκ)2 − φ2
nκ are the transverse propagation constants (transverse wave-numbers).

In this setting, if a packet of plane waves excites a non-magnetic, isotropic, linearly polarised
(i.e.

E(r, nκ) = (E1(nκ; y, z), 0, 0)⊤ , H(r, nκ) =

(

0,
1

inωμ0

∂E1(nκ; y, z)

∂z
,− 1

inωμ0

∂E1(nκ; y, z)

∂y

)⊤

(E-polarisation)), transversely inhomogeneous ε(L) = ε(L)(z) = 1 + 4πχ
(1)
11 (z) dielectric layer

(see Fig. 1) with a cubic polarisability P(NL)(r, nκ) = (P
(NL)
1 (nκ; y, z), 0, 0)⊤ of the medium,

the complex amplitudes of the total fields

E1(r, nκ) =: E1(nκ; y, z) := U(nκ; z) exp(iφnκy) := Einc
1 (nκ; y, z) + Escat

1 (nκ; y, z)
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satisfy the system of equations (cf. (16) – (18))

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇2E1(r, κ) + κ2εκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, κ)
= −α(z)κ2E2

1(r, 2κ)E1(r, 3κ),

∇2E1(r, 2κ) + (2κ)2ε2κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, 2κ) = 0,

∇2E1(r, 3κ) + (3κ)2ε3κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, 3κ)

= −α(z)(3κ)2
{1

3
E3

1(r, κ) + E2
1(r, 2κ)E1(r, κ)

}

(21)

together with the following conditions, where Etg(nκ; y, z) and Htg (nκ; y, z) denote
the tangential components of the intensity vectors of the full electromagnetic field
{E(nκ; y, z)}n=1,2,3 , {H(nκ; y, z)}n=1,2,3:

(C1) E1(nκ; y, z) = U(nκ; z) exp(iφnκy), n = 1, 2, 3

(the quasi-homogeneity condition w.r.t. the spatial variable y introduced above),

(C2) φnκ = nφκ , n = 1, 2, 3,

(the condition of phase synchronism of waves introduced above),

(C3) Etg(nκ; y, z) and Htg(nκ; y, z) (i.e. E1(nκ; y, z) and H2(nκ; y, z)) are continuous at the
boundary layers of the non-linear structure,

(C4) Escat
1 (nκ; y, z) =

{

ascat
nκ

bscat
nκ

}

exp (i (φnκy ± Γnκ(z ∓ 2πδ))) , z><± 2πδ , n = 1, 2, 3

(the radiation condition w.r.t. the scattered field).

The condition (C4) provides a physically consistent behaviour of the energy characteristics
of scattering and guarantees the absence of waves coming from infinity (i.e. z = ±∞), see
Shestopalov & Sirenko (1989). We study the scattering properties of the non-linear layer,
where in (C4) we always have

Im Γnκ = 0, Re Γnκ > 0. (22)

Note that (C4) is also applicable for the analysis of the wave-guide properties of the layer,
where Im Γnκ > 0, Re Γnκ = 0. The desired solution of the scattering and generation problem
(21) under the conditions (C1) – (C4) can be represented as follows:

E1(nκ; y, z) = U(nκ; z) exp(iφnκy)

=

⎧

⎨

⎩

ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,
U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ,
n = 1, 2, 3.

(23)

Substituting this representation into the system (21), the following system of non-linear
ordinary differential equations results, where “ ′ ” denotes the differentiation w.r.t. z:

U′′(nκ; z) +
{

Γ2
nκ − (nκ)2 [1 − εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))]

}

U(nκ; z)

= −(nκ)2α(z)

(

δn1U2(2κ; z)U(3κ; z) + δn3

{

1

3
U3(κ; z) + U2(2κ; z)U(κ; z)

})

,

|z| ≤ 2πδ, n = 1, 2, 3.

(24)
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The boundary conditions follow from the continuity of the tangential components of the full
fields of diffraction

{

Etg(nκ; y, z)
}

n=1,2,3

{

Htg(nκ; y, z)
}

n=1,2,3
at the boundary z = 2πδ and

z = −2πδ of the non-linear layer (cf. (C3)). According to (C3) and the representation of the
electrical components of the electromagnetic field (23), at the boundary of the non-linear layer
we obtain:

U(nκ; 2πδ) = ascat
nκ + ainc

nκ , U′(nκ; 2πδ) = iΓnκ
(

ascat
nκ − ainc

nκ

)

,
U(nκ;−2πδ) = bscat

nκ , U′(nκ;−2πδ) = −iΓnκbscat
nκ , n = 1, 2, 3.

(25)

Eliminating in (25) the unknown values of the complex amplitudes
{

ascat
nκ

}

n=1,2,3 ,
{

bscat
nκ

}

n=1,2,3 of the scattered field and taking into consideration that ainc
nκ = Uinc(nκ; 2πδ),

we arrive at the desired boundary conditions for the problem (21), (C1) – (C4):

iΓnκU(nκ;−2πδ) + U′(nκ;−2πδ) = 0,

iΓnκU(nκ; 2πδ) − U′(nκ; 2πδ) = 2iΓnκ ainc
nκ , n = 1, 2, 3.

(26)

The system of ordinary differential equations (24) and the boundary conditions (26) form a
semi-linear boundary-value problem of Sturm-Liouville type, see also Angermann & Yatsyk
(2010); Shestopalov & Yatsyk (2007; 2010); Yatsyk (2007).

4. Existence and uniqueness of a weak solution of the non-linear boundary-value

problem

Denote by u = u(z) :=
(

u1(z), u2(z), u3(z)
)⊤

:=
(

U(κ; z), U(2κ; z), U(3κ; z)
)⊤

the (formal)

solution of (24)&(26) and let, for w = (w1, w2, w3)
⊤ ∈ C3,

F (z, w) :=

⎛

⎜

⎝

{

Γ2
κ − κ2 [1 − εκ(z, α(z), w1, w2, w3)]

}

w1 + α(z)κ2w2
2w3

{

Γ2
2κ − (2κ)2 [1 − ε2κ(z, α(z), w1, w2, w3)]

}

w2
{

Γ2
3κ − (3κ)2 [1 − ε3κ(z, α(z), w1, w2, w3)]

}

w3 + α(z)(3κ)2
{

1
3 w3

1 + w1w2
1

}

⎞

⎟

⎠
.

Then the system of differential equations (24) takes the form

− u′′(z) = F (z, u(z)) , z ∈ I := (−2πδ, 2πδ) . (27)

The boundary conditions (26) can be written as

u′ (−2πδ) + iGu (−2πδ) = 0, u′(2πδ)− iGu(2πδ) = −2iGainc, (28)

where G := diag(Γκ , Γ2κ , Γ3κ) and ainc :=
(

ainc
κ , ainc

2κ , ainc
3κ

)⊤
. Taking an arbitrary

complex-valued vector function v : Icl := [−2πδ, 2πδ] → C3, v = (v1, v2, v3)
⊤ , multiplying

the vector differential equation (27) by the complex conjugate v and integrating w.r.t. z over
the interval I , we arrive at the equation

−
∫

I
u′′ · v dz =

∫

I
F (z, u) · v dz .
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Integrating formally by parts and using the boundary conditions (28), we obtain:

−
∫

I u′′ · v dz =
∫

I u′ · v dz − (u′ · v) (2πδ) + (u′ · v) (−2πδ)

=
∫

I u′ · v′dz − i [((Gu) · v) (2πδ) + ((Gu) · v) (−2πδ)] + 2i(Gainc) · v(2πδ).
(29)

Now we take into consideration the complex Sobolev space H1(I) consisting of functions
with values in C, which together with their weak derivatives belong to L2(I). According to

(29) it is natural to introduce the follwing forms for w, v ∈ V :=
[

H1(I)
]3

:

a (w, v) :=
∫

I w′ · v′dz − i [((Gw) · v) (2πδ) + ((Gw) · v) (−2πδ)] ,

b (w, v) :=
∫

I F (z, w) · vdz − 2i(Gainc) · v(2πδ).

So we arrive at the following weak formulation of boundary-value problem (24):

Find u ∈ V such that a (u, v) = b (u, v) ∀v ∈ V. (30)

The space V is equipped with the usual norm and seminorm, resp.:

‖v‖2
1,2,I :=

3

∑
n=1

[

‖vn‖2
0,2,I + ‖v′n‖2

0,2,I
]

, |v|21,2,I :=
3

∑
n=1

‖v′n‖2
0,2,I ,

where ‖v‖0,2,I , for v ∈ L2(I), denotes the usual L2(I)-norm. If v ∈ [L2(I)]3, we will use the

same notation, i.e. ‖v‖2
0,2,I :=

3

∑
n=1

‖vn‖2
0,2,I . Then the above norm and seminorm in V can be

written in short as

‖v‖2
1,2,I := ‖v‖2

0,2,I + ‖v′‖2
0,2,I , |v|1,2,I := ‖v′‖0,2,I . (31)

Analogously, we will not make any notational difference between the absolute value | · | of a
(scalar) element of C and the norm | · | of a (vectorial) element of C3.
On V, the following norm can be introduced:

‖v‖2
V :=

3

∑
n=1

[

|vn(−2 π δ)|2 + |vn(2 π δ)|2 + ‖v′n‖2
0,2,I
]

= |v(−2 π δ)|2 + |v(2 π δ)|2 + |v|21,2,I .

(32)

Corollary 1. The norms defined in (31) and (32) are equivalent on V, i.e.

C−‖v‖1,2,I ≤ ‖v‖V ≤ C+‖v‖1,2,I ∀v ∈ V

with C− := 1/
√

16 π2δ2 + 1, C+ :=

√

max
{

1
2 π δ + 1; 2

}

.

Proof. It is not difficult to verify the following inequality for any (scalar) element v ∈ H1(I)
(see, e.g., (Angermann & Yatsyk, 2008, Cor. 4)):

‖v‖2
0,2,I ≤ 4 π δ[|v(−2 π δ)|2 + |v(2 π δ)|2] + 16 π2δ2‖v′‖2

0,2,I . (33)
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Consequently, by (31), ‖v‖2
1,2,I ≤ 4 π δ[|v(−2 π δ)|2 + |v(2 π δ)|2] + (16 π2δ2 + 1)‖v′‖2

0,2,I .

Since 4 π δ < 16 π2δ2 + 1, we immediately obtain the left-hand side of the desired estimate:

‖v‖2
1,2,I ≤ (16 π2δ2 + 1)‖v‖2

V.

On the other hand, a trace inequality (see, e.g., (Angermann & Yatsyk, 2008, Cor. 5)) says that
we have the following estimate for any element v ∈ H1(I):

|v(−2 π δ)|2 + |v(2 π δ)|2 ≤
(

1

2 π δ
+ 1

)

‖v‖2
0,2,I + ‖v′‖2

0,2,I .

Thus ‖v‖2
V ≤

(

1
2 π δ + 1

)

‖v‖2
0,2,I + 2‖v′‖2

0,2,I , that is C2
+ := max

{

1
2 π δ + 1; 2

}

. ◭

Lemma 1. If the matrix G is positively definite, then the form a is coercive and bounded on V, i.e.

CK‖v‖2
1,2,I ≤ |a(v, v)|, |a(w, v)| ≤ Cb‖w‖1,2,I‖v‖1,2,I

for all w, v ∈ V with CK :=
√

2
2 min{1; Γκ ; Γ2κ ; Γ3κ}C2

−, Cb := max{1; Γκ ; Γ2κ ; Γ3κ}C2
+.

Remark 1. Due to (22), the assumption of the lemma is satisfied.

Proof of the lemma: Obviously,

|a(v, v)| =
√

|Re a(v, v)|2 + |Im a(v, v)|2 ≥
√

2

2
[|Re a(v, v)|+ |Im a(v, v)|]

=

√
2

2

3

∑
n=1

[

‖v′n‖2
0,2,I + Γnκ |vn(−2 π δ)|2 + Γnκ |vn(2 π δ)|2

]

≥
√

2

2
min{1; Γκ ; Γ2κ ; Γ3κ}‖v‖2

V,

(34)
where we have used the convention Γ1κ := Γκ . By Corollary 1, this estimate implies the
coercivity of a on V. The proof of the continuity runs in a similar way:

|a(w, v)| ≤ max{1; Γκ ; Γ2κ ; Γ3κ}
3

∑
n=1

[

‖w′
n‖0,2,I‖v′n‖0,2,I

+ |wn(−2 π δ)||vn(−2 π δ)|+ |wn(2 π δ)||vn(2 π δ)|]

≤ max{1; Γκ ; Γ2κ ; Γ3κ}‖w‖V‖v‖V,

where the last estimate is a consequence of the Cauchy-Schwarz inequality for finite sums.
From Corollary 1 we obtain the above expression for Cb. ◭

Corollary 2. Under the assumption of Lemma 1, given an antilinear continuous functional � : V →
C, the problem to find an element u ∈ V such that

a(u, v) = �(v) ∀v ∈ V (35)

is uniquely solvable and the following estimate holds:

‖u‖1,2,I ≤ C−1
K ‖�‖∗, where ‖�‖∗ := sup

v∈V

|�(v)|
‖v‖1,2,I

.
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Proof. This general result is well-known (see, e.g., (Showalter, 1994, Thm. 2.1)). ◭

Corollary 3. If the antilinear continuous functional � : V → C has the particular structure

�(v) :=
∫

I
f · v dz + γ− · v(−2 π δ) + γ+ · v(2 π δ),

where f ∈ [L2(I)]3 and γ−, γ+ ∈ C3 are given, then

‖�‖∗ ≤ C+

√

max {4 π δ + 1; 16 π2δ2}
{

‖f‖2
0,2,I + |γ−|2 + |γ+|2

}1/2
.

Proof. By the Cauchy-Schwarz inequality for finite sums, we see that

|�(v)| ≤ ‖f‖0,2,I‖v‖0,2,I + |γ−||v(−2 π δ)|+ |γ+||v(2 π δ)|

≤
{

‖f‖2
0,2,I + |γ−|2 + |γ+|2

}1/2 {

‖v‖2
0,2,I + |v(−2 π δ)|2 + |v(2 π δ)|2

}1/2
.

Using the estimate (33), it follows

|�(v)| ≤
√

max {4 π δ + 1; 16 π2δ2}
{

‖f‖2
0,2,I + |γ−|2 + |γ+|2

}1/2
‖v‖V. (36)

It remains to apply Corollary 1. ◭

Remark 2. Combining Corollary 2 and Corollary 3, we obtain the following estimate for the solution
u of (35):

‖u‖1,2,I ≤ C+

√

2 max {4 π δ + 1; 16 π2δ2}
C2
− min{1; Γκ ; Γ2κ ; Γ3κ}

{

‖f‖2
0,2,I + |γ−|2 + |γ+|2

}1/2
.

The obtained constant suffers from the twice use of the norm equivalence in the proofs of Lemma 1 and
Corollary 3, respectively. It can be improved if we start from the estimate (34). Namely, setting v := u

in (35), we obtain from (34) and (36):

√
2

2
min{1; Γκ ; Γ2κ ; Γ3κ}‖v‖2

V ≤ |a(u, u)| = |�(u)|

≤
√

max {4 π δ + 1; 16 π2δ2}
{

‖f‖2
0,2,I + |γ−|2 + |γ+|2

}1/2
‖u‖V.

Therefore, by Corollary 1,

‖u‖1,2,I ≤ CN

{

‖f‖2
0,2,I + |γ−|2 + |γ+|2

}1/2
with CN :=

√

2 max {4 π δ + 1; 16 π2δ2}
C− min{1; Γκ ; Γ2κ ; Γ3κ}

. (37)

The identity
Aw(v) := a(w, v) ∀w, v ∈ V

defines a linear operator A : V → V∗, where V∗ is the dual space of V consisting of all
antilinear continuous functionals acting from V to C. By Lemma 1 and Corollary 2, A is a
bounded operator with a bounded inverse A−1 : V∗ → V:

‖w‖1,2,I ≤ C−1
K ‖Aw‖∗ ∀w ∈ V.
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Lemma 2. If ε(L), α ∈ L∞(I), then the formal substitution N (w)(z) := F(z, w(z)) defines a
Nemyckii operator N : V → [L2(I)]3, and there is a constant CS > 0 such that

‖N (w)‖0,2,I ≤ κ2
[

9‖ε(L) − sin2 ϕκ‖0,∞,I +
√

170 C2
S‖α‖0,∞,I‖w‖2

1,2,I
]

‖w‖0,2,I .

Proof. It is sufficient to verify the estimate. According to the decomposition

F(z, w) := F(L)(z, w) + F(NL)(z, w) with

F(L)(z, w) :=

⎛

⎜

⎜

⎜

⎝

{Γ2
κ − κ2

[

1 − ε(L)(z)
]

}w1

{Γ2
2κ − (2κ)2

[

1 − ε(L)(z)
]

}w2

{Γ2
3κ − (3κ)2

[

1 − ε(L)(z)
]

}w3

⎞

⎟

⎟

⎟

⎠

,

F(NL)(z, w) :=

⎛

⎜

⎜

⎝

F
(NL)
1 (z, w)

F
(NL)
2 (z, w)

F
(NL)
3 (z, w)

⎞

⎟

⎟

⎠

:= α(z)

⎛

⎜

⎜

⎝

κ2
[

|w|2w1 + w2
1w3 + w2

2w3

]

(2κ)2
[

|w|2w2 + w1w2w3

]

(3κ)2
[

|w|2w3 +
1
3 w3

1 + w1w2
2

]

⎞

⎟

⎟

⎠

(cf. (19), (24)), it is convinient to split N into a linear and a non-linear part as N (w)(z) :=

N (L)(w)(z) + N (NL)(w)(z), where N (L)(w)(z) := F(L)(z, w(z)) and N (NL)(w)(z) :=
F(NL)(z, w(z)). Now, by the definition of the wave-numbers (see Section 3),

Γ2
nκ − (nκ)2

[

1 − ε(L)(z)
]

= (nκ)2
[

ε(L)(z)− sin2 ϕnκ

]

= (nκ)2
[

ε(L)(z)− sin2 ϕκ

]

, n = 1, 2, 3,

where the last relation is a consequence of the condition (C2). Therefore,

‖N (L)(w)‖0,2,I ≤ (3κ)2‖ε(L) − sin2 ϕκ‖0,∞,I‖w‖0,2,I . (38)

Next, since H1(I) is continuously embedded into C(Icl) by Sobolev’s embedding theorem
(see, e.g., (Adams, 1975, Thm. 5.4)), there exists a constant CS > 0 such that

‖w‖0,∞,I := sup
z∈I

|w(z)| = sup
z∈I

{

3

∑
n=1

|wn(z)|2
}1/2

≤ CS‖w‖1,2,I . (39)

Using this fact we easily obtain the following triple of estimates:

‖F
(NL)
1 (·, w)‖0,2,I ≤ κ2‖α‖0,∞,I

[

‖|w|2w1‖0,2,I + ‖w2
1w3‖0,2,I + ‖w2

2w3‖0,2,I
]

≤ κ2‖α‖0,∞,I
[

‖w‖2
0,∞,I‖w1‖0,2,I

+ ‖w1‖2
0,∞,I‖w3‖0,2,I + ‖w2‖0,∞,I‖w3‖0,∞,I‖w2‖0,2,I

]

≤ κ2‖α‖0,∞,I‖w‖2
0,∞,I [‖w1‖0,2,I + ‖w2‖0,2,I + ‖w3‖0,2,I ]

≤
√

3 κ2C2
S‖α‖0,∞,I‖w‖2

1,2,I‖w‖0,2,I ,
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‖F
(NL)
2 (·, w)‖0,2,I ≤ (2κ)2‖α‖0,∞,I

[

‖|w|2w2‖0,2,I + ‖w1w2w3‖0,2,I
]

≤ (2κ)2‖α‖0,∞,I‖w‖2
0,∞,I [‖w2‖0,2,I + ‖w3‖0,2,I ]

≤
√

2 (2κ)2C2
S‖α‖0,∞,I‖w‖2

1,2,I‖w‖0,2,I ,

‖F
(NL)
3 (·, w)‖0,2,I ≤ (3κ)2‖α‖0,∞,I

[

‖|w|2w3‖0,2,I +
1

3
‖w3

1‖0,2,I + ‖w1w2
2‖0,2,I

]

≤ (3κ)2‖α‖0,∞,I‖w‖2
0,∞,I

[

1

3
‖w1‖0,2,I + ‖w2‖0,2,I + ‖w3‖0,2,I

]

≤
√

5

3
(3κ)2C2

S‖α‖0,∞,I‖w‖2
1,2,I‖w‖0,2,I .

These estimates immediately imply that

‖N (NL)(w)‖2
0,2,I =

3

∑
n=1

‖F
(NL)
n (·, w)‖2

0,2,I ≤ 170κ4C4
S‖α‖2

0,∞,I‖w‖4
1,2,I‖w‖2

0,2,I . (40)

Putting the estimates (38) and (40) together, we obtain the desired estimate. ◭
As a consequence of Lemma 2, the following non-linear operator F : V → V∗ can be
introduced:

F (w)(v) := b (w, v) =
∫

I
N (w) · vdz − 2i(Gainc) · v(2πδ) ∀w, v ∈ V.

Then the problem (30) is equivalent to the operator equation Au = F (u) in V∗. Furthermore,
by Lemma 1, this equation is equivalent to the fixed-point problem

u = A−1F (u) in V. (41)

Theorem 1. Assume there is a number ̺ > 0 such that

CNκ2
[

9‖ε(L) − sin2 ϕκ‖0,∞,I + 3
√

514 C2
S‖α‖0,∞,I̺2

]

≤
√

2

2
and CN |Gainc| ≤

√
2

4
̺ .

Then the problem (41) has a unique solution u ∈ Kcl
̺ := {v ∈ V : ‖v‖1,2,I ≤ ̺}.

Proof. Obviously, Kcl
̺ is a closed nonempty subset of V. We show that A−1F (Kcl

̺ ) ⊂ Kcl
̺ . By

(37) with the particular choice f := N (w), γ− := 0, γ+ := −2iGainc, for w ∈ Kcl
̺ we have that

‖A−1F (w)‖1,2,I ≤ CN

{

‖N (w)‖2
0,2,I + 4|Gainc|2

}1/2

≤ CN

{

κ4
[

9‖ε(L) − sin2 ϕκ‖0,∞,I +
√

170 C2
S‖α‖0,∞,I‖w‖2

1,2,I
]2

‖w‖2
0,2,I + 4|Gainc|2

}1/2

≤ CN

{

κ4
[

9‖ε(L) − sin2 ϕκ‖0,∞,I +
√

170 C2
S‖α‖0,∞,I̺2

]2
̺2 + 4|Gainc|2

}1/2

≤ ̺ .
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Next, from (37) with the choice f := N (w)−N (v), γ− := γ+ := 0 we conclude that

‖A−1F (w)−A−1F (v)‖1,2,I ≤ CN‖N (w)−N (v)‖0,2,I

≤ CN

{

‖N (L)(w)−N (L)(v)‖0,2,I + ‖N (NL)(w)−N (NL)(v)‖0,2,I
}

.

The linear term can be estimated as in the proof of Lemma 2 (cf. (38)):

‖N (L)(w)−N (L)(v)‖0,2,I = ‖N (L)(w − v)‖0,2,I

≤ (3κ)2‖ε(L) − sin2 ϕκ‖0,∞,I‖w − v‖0,2,I .

To treat the non-linear term, we start with the following estimates:

‖F
(NL)
1 (·, w)− F

(NL)
1 (·, v)‖0,2,I

≤ κ2‖α‖0,∞,I
[

‖|w|2w1 − |v|2v1‖0,2,I + ‖w2
1w3 − v2

1v3‖0,2,I + ‖w2
2w3 − v2

2v3‖0,2,I
]

,

‖F
(NL)
2 (·, w)− F

(NL)
2 (·, v)‖0,2,I

≤ (2κ)2‖α‖0,∞,I
[

‖|w|2w2 − |v|2v2‖0,2,I + ‖w1w2w3 − v1v2v3‖0,2,I
]

,

‖F
(NL)
3 (·, w)− F

(NL)
3 (·, v)‖0,2,I

≤ (3κ)2‖α‖0,∞,I

[

‖|w|2w3 − |v|2v3‖0,2,I +
1

3
‖w3

1 − v3
1‖0,2,I + ‖w1w2

2 − v1v2
2‖0,2,I

]

.

The subsequent collection of simple estimates shows that the absolute value of all terms
appearing in the L2(I)-terms of the right-hand sides above can be bounded by one and the
same upper bound. Namely, since

|w|2wn − |v|2vn = |w|2(wn − vn) + vn(|w|2 − |v|2)
= |w|2(wn − vn) + vn(|w|+ |v|)(|w| − |v|)

and
∣

∣|w| − |v|
∣

∣ ≤ |w − v|,
we obtain

∣

∣|w|2wn − |v|2vn

∣

∣ ≤
[

|w|2 + |w||v|+ |v|2
]

|w − v|, n = 1, 2, 3.

Similarly,

|w2
1w3 − v2

1v3| ≤
[

|w|2 + |w||v|+ |v|2
]

|w − v|,

|w1w2w3 − v1v2v3| ≤
[

|w|2 + |w||v|+ |v|2
]

|w − v|,

|w3
1 − v3

1| ≤
[

|w|2 + |w||v|+ |v|2
]

|w − v|.
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Therefore

‖F
(NL)
1 (·, w)− F

(NL)
1 (·, v)‖0,2,I

≤ 3κ2‖α‖0,∞,I
[

‖w‖2
0,∞,I + ‖w‖0,∞,I‖v‖0,∞,I + ‖v‖2

0,∞,I
]

‖w − v‖0,2,I

≤ 3κ2‖α‖0,∞,IC2
S

[

‖w‖2
1,2,I + ‖w‖1,2,I‖v‖1,2,I + ‖v‖2

1,2,I
]

‖w − v‖0,2,I ,

‖F
(NL)
2 (·, w)− F

(NL)
2 (·, v)‖0,2,I

≤ 2(2κ)2‖α‖0,∞,IC2
S

[

‖w‖2
1,2,I + ‖w‖1,2,I‖v‖1,2,I + ‖v‖2

1,2,I
]

‖w − v‖0,2,I

‖F
(NL)
3 (·, w)− F

(NL)
3 (·, v)‖0,2,I

≤ 7

3
(3κ)2‖α‖0,∞,IC2

S

[

‖w‖2
1,2,I + ‖w‖1,2,I‖v‖1,2,I + ‖v‖2

1,2,I
]

‖w − v‖0,2,I .

It follows that

‖N (NL)(w)−N (NL)(v)‖2
0,2,I =

3

∑
n=1

‖F
(NL)
n (·, w)− F

(NL)
n (·, v)‖2

0,2,I

≤ 514κ4‖α‖2
0,∞,IC4

S

[

‖w‖2
1,2,I + ‖w‖1,2,I‖v‖1,2,I + ‖v‖2

1,2,I
]2

‖w − v‖2
0,2,I .

Hence, for w, v ∈ Kcl
̺ : ‖N (NL)(w)−N (NL)(v)‖0,2,I ≤ 3

√
514κ2C2

S‖α‖0,∞,I̺2‖w − v‖0,2,I .
In summary, by assumption we arrive at the estimate

‖A−1F (w)−A−1F (v)‖1,2,I

≤CNκ2
[

9‖ε(L) − sin2 ϕκ‖0,∞,I + 3
√

514C2
S‖α‖0,∞,I̺2

]

‖w − v‖0,2,I ≤
√

2

2
‖w − v‖1,2,I .

By Banach’s fixed-point theorem, the problem (41) has a unique solution u ∈ Kcl
̺ . ◭

5. The non-linear problem and the equivalent system of non-linear integral

equations

The problem (21), (C1) – (C4) can be reduced to finding solutions of one-dimensional
non-linear integral equations w.r.t. the components U(nκ; z), n = 1, 2, 3, z ∈ [−2πδ, 2πδ] ,
of the fields scattered and generated in the non-linear layer. Similar to the results of the
papers Angermann & Yatsyk (2011), Angermann & Yatsyk (2010), Shestopalov & Yatsyk
(2010), Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007), Shestopalov
& Sirenko (1989), we give the derivation of these equations for the case of excitation of the
non-linear structure by a plane-wave packet (20).
Taking into account the representation (23), the solution of (21), (C1) – (C4) in the whole space
Q := {q = (y, z) : |y| < ∞, |z| < ∞} is obtained using the properties of the canonical Green’s
function of the problem (21), (C1) – (C4) (for the special case εnκ ≡ 1) which is defined, for
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Y > 0, in the strip Q{Y,∞} := {q = (y, z) : |y| < Y, |z| < ∞} ⊂ Q by

G0(nκ; q, q0) :=
i

4Y
exp {i [φnκ (y − y0) + Γnκ |z − z0|]} /Γnκ

= exp (±iφnκy)
iπ

4Y

∫ ∞

−∞
H

(1)
0

(

nκ

√

(y̆ − y0)
2 + (z − z0)2

)

exp (∓iφnκ y̆) dy̆, n = 1, 2, 3,

(42)

where H
(1)
0 as usual denotes the Hankel function of the first kind of order zero (cf. Shestopalov

& Sirenko (1989); Sirenko et al. (1985)).
The system of non-linear integral equations is obtained by means of an iterative approach
Angermann & Yatsyk (2011), Yatsyk (2007), Shestopalov & Yatsyk (2007), Shestopalov &
Sirenko (1989), Titchmarsh (1961). Denote both the scattered and the generated full fields
of diffraction at each frequency nκ, n = 1, 2, 3, i.e. the solution of the problem (21), (C1) – (C4),

by E1

(

nκ; q|q=(y,z)

)

= U(nκ; z) exp (iφnκy) (cf. (23)), and write the system (21) in the form

(

∇2 + (nκ)2
)

E1(nκ; q) = [1 − εnκ (q, α(q), E1(κ; q), E1(2κ; q), E1(3κ; q))] (nκ)2E1(nκ; q)

− δn1α(q)(nκ)2E2
1(2κ; q)E1(3κ; q)

−δn3α(q)(nκ)2

{

1

3
E3

1(κ; q) + E2
1(2κ; q)E1(κ; q)

}

, n = 1, 2, 3.

(43)
At the right-hand side of the system (43), the first term outside the layer vanishes, since, by
assumption, the permittivity of the medium in which the non-linear layer is situated is equal
to one, i.e. 1 − εnκ (q, α(q), E1(κ; q), E1(2κ; q), E1(3κ; q)) ≡ 0 for |z| > 2πδ.
The excitation field of the non-linear structure can be represented in the form of a packet of
incident plane waves

{

Einc
1 (nκ; q)

}

n=1,2,3
satisfying the condition of phase synchronism (C2),

where
Einc

1 (nκ; q) = ainc
nκ exp {i [φnκy − Γnκ(z − 2πδ)]} , n = 1, 2, 3. (44)

Furthermore, in the present situation described by the system (43), we assume that the
excitation field Einc

1 (κ; q) of the non-linear structure at the frequency κ is sufficiently strong

(i.e. the amplitude ainc
κ is sufficiently large such that the third harmonic generation is possible),

whereas the amplitudes ainc
2κ , ainc

3κ corresponding to excitation fields Einc
1 (2κ; q), Einc

1 (3κ; q) at
the frequencies 2κ, 3κ, respectively, are selected sufficiently weak such that no generation of
multiple harmonics occurs.
In the whole space Q, for each frequency nκ, n = 1, 2, 3, the fields

{

Einc
1 (nκ; q)

}

n=1,2,3
of

incident plane waves satisfy a system of homogeneous Helmholtz equations:

(

∇2 + (nκ)2
)

Einc
1 (nκ; q) = 0, q ∈ Q, n = 1, 2, 3. (45)

For z > 2πδ, the incident fields
{

Einc
1 (nκ; q)

}

n=1,2,3
are fields of plane waves approaching the

layer, while, for z < 2πδ, they move away from the layer and satisfy the radiation condition
(since, in the representation of the fields Einc

1 (nκ; q), n = 1, 2, 3, the transverse propagation
constants Γnκ > 0, n = 1, 2, 3 are positive).
Following Angermann & Yatsyk (2011), we construct a sequence {E1,s(nκ; q)}∞

s=0 , n = 1, 2, 3,
of functions in the region Q (where each function, starting with the index p = 1, satisfies
the conditions (C1) – (C4)) such that the limit functions E1(nκ; q) = lim

s→∞
E1,s(nκ; q) at the
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frequencies nκ, n = 1, 2, 3, satisfy (21), (C1) – (C4), i.e.

(

∇2 + (nκ)2
)

E1,0(nκ; q) = 0 ,
(

∇2 + (nκ)2
)

E1,1(nκ; q) = [1 − εnκ (q, α(q), E1,0(κ; q), E1,0(2κ; q), E1,0(3κ; q))]
× (nκ)2E1,0(nκ; q)− δn1α(q)(nκ)2E2

1,0(2κ; q)E1,0(3κ; q)

− δn3α(q)(nκ)2
{

1
3 E3

1,0(κ; q) + E2
1,0(2κ; q)E1,0(κ; q)

}

, . . . ,
(

∇2 + (nκ)2
)

E1,s+1(nκ; q) = [1 − εnκ (q, α(q), E1,s(κ; q), E1,s(2κ; q), E1,s(3κ; q))]
× (nκ)2E1,s(nκ; q)− δn1α(q)(nκ)2E2

1,s(2κ; q)E1,s(3κ; q)

− δn3α(q)(nκ)2
{

1
3 E3

1,s(κ; q) + E2
1,s(2κ; q)E1,s(κ; q)

}

, . . . ,

n = 1, 2, 3.

(46)

The system of equations (46) is formally equivalent to the following one:

E1,0(nκ; q) := Einc
1 (nκ; q),

E1,1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1,0(κ; q0), E1,0(2κ; q0), E1,0(3κ; q0))] E1,0(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1,0(2κ; q0)E1,0(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{

1

3
E3

1,0(κ; q0) + E2
1,0(2κ; q0)E1,0(κ; q0)

}

dq0

+ E1,0(nκ; q), . . . ,

E1,s+1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1,s(κ; q0), E1,s(2κ; q0), E1,s(3κ; q0))] E1,s(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1,s(2κ; q0)E1,s(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{

1

3
E3

1,s(κ; q0) + E2
1,s(2κ; q0)E1,s(κ; q0)

}

dq0

+ E1,0(nκ; q), . . . , q ∈ Q, n = 1, 2, 3.
(47)

Here Qδ := {q = (y, z) : |y| < ∞, |z| ≤ 2πδ} denotes the strip filled by the non-linear
dielectric layer. The extension of the permitted values q ∈ Q{Y,∞} ⊂ Q from the strip Q{Y,∞}
(where the Green’s function (42) is defined) to the whole space Q is realised by passing to the
limit Y → ∞ (where this procedure is admissible because of the free choice of the parameter
Y and the asymptotic behaviour of the integrands as O

(

Y−1
)

, see (42)). Letting s tend to
infinity in (47), we obtain the integral representations of the unknown diffraction fields in the
region Q:

E1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1(κ; q0), E1(2κ; q0), E1(3κ; q0))] E1(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1(2κ; q0)E1(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{

1

3
E3

1(κ; q0) + E2
1(2κ; q0)E1(κ; q0)

}

dq0

+ Einc
1 (nκ; q), q ∈ Q, n = 1, 2, 3.

(48)
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Now, substituting the representation (42) for the canonical Green’s function G0 into the system
(48) and taking into consideration the expressions for the permittivity

εnκ (q0, α(q0), E1(κ; q0), E1(2κ; q0), E1(3κ; q0)) = εnκ (z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0)) ,

we get the following system w.r.t. the unknown quasi-homogeneous fields

E1

(

nκ; q|q≡(y,z)

)

= U(nκ; z) exp (iφnκy) , n = 1, 2, 3, |z| ≤ 2πδ:

U(nκ; z) exp (iφnκy)

= − lim
Y→∞

(

i(nκ)2

4YΓnκ
exp(iφnκy)

∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|) ×

× [1 − εnκ (z0, α(z0), U (κ; z0) , U (2κ; z0) , U (3κ; z0))]U (nκ; z0) dy0dz0)

+ lim
Y→∞

(

δn1
i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|)α(z0)U

2(2κ; z0)U(3κ; z0)dy0dz0

)

+ lim
Y→∞

(

δn3
i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|)α(z0)

{

1

3
U3(κ; z0)+U2(2κ; z0)U(κ; z0)

}

dy0dz0

)

+ Uinc(nκ; z) exp(iφnκy), |z| ≤ 2πδ, n = 1, 2, 3.

Integrating in the region Qδ w.r.t. the variable y0, we arrive at a system of non-linear Fredholm
integral equations of the second kind w.r.t. the unknown functions U(nκ; ·) ∈ L2(−2πδ, 2πδ):

U(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)×

× [1 − εnκ (z0, α(z0), U(κ; z0) , U(2κ; z0) , U(3κ; z0))]U(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U

2(2κ; z0)U(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)

{

1

3
U3(κ; z0) + U2(2κ; z0)U(κ; z0)

}

dz0

+ Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(49)

Here Uinc(nκ; z) = ainc
nκ exp [−iΓnκ(z − 2πδ)] , n = 1, 2, 3.

The solution of the original problem (21), (C1) – (C4), represented as (23), can be obtained
from (49) using the formulas

U(nκ; 2πδ) = ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1, 2, 3, (50)

(cf. (C3)). The derivation of the system of non-linear integral equations (49) shows that (49)
can be regarded as an integral representation of the desired solution of (21), (C1) – (C4)
(i.e. solutions of the form E1 (nκ; y, z) = U(nκ; z) exp (iφnκy), n = 1, 2, 3, see (23)) for points
located outside the non-linear layer: {(y, z) : |y| < ∞, |z| > 2πδ} . Indeed, given the solution
of non-linear integral equations (49) in the region |z| ≤ 2πδ, the substitution into the integrals
of (49) leads to explicit expressions of the desired solutions U(nκ; z) for points |z| > 2πδ
outside the non-linear layer at each frequency nκ, n = 1, 2, 3.
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6. A sufficient condition for the existence of solutions of the system of non-linear

equations

In the case of a linear system (49), i.e. if α ≡ 0, the problem of existence and uniqueness of
solutions has been investigated in Sirenko et al. (1985), Shestopalov & Sirenko (1989). In the
general situation, the system of non-linear integral equations can have a unique solution, no
solution or several solutions, depending on the properties of the kernel and the right-hand
side.
We start with the derivation of sufficient conditions for the existence of solutions of the
system (49) (cf. Shestopalov & Yatsyk (2010), Shestopalov & Yatsyk (2007), Kravchenko &
Yatsyk (2007)). To do so, in the region |z| ≤ 2πδ we consider two sequences of solutions
{Us(nκ; z), n = 1, 2, 3}∞

s=0 and {Ψs(nκ; z), n = 1, 2, 3}∞
s=0 of the following systems of integral

equations:

Us+1(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Us(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U

2
s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0)

{

1

3
U3

s (κ; z0) + U2
s (2κ; z0)Us(κ; z0)

}

dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3,

Ψs(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Ψs(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U

2
s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0)

{

1

3
U3

s (κ; z0) + U2
s (2κ; z0)Us(κ; z0)

}

dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(51)
The first system of equations (51) coincides with the iterative scheme (47) for the solution of
the non-linear system (49). The second system w.r.t. Ψs(nκ; z), n = 1, 2, 3, is nothing else than
the linearisation of the non-linear system (49) around Us(nκ; z), n = 1, 2, 3.
In the case that the functions Ψs(nκ; z), n = 1, 2, 3, are not eigen-functions of the linearised
problem under consideration with the induced permittivity of the layer (cf. 19))

εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))

= ε(L)(z) + ε
(NL)
nκ (α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))

= ε(L)(z) + α(z){|Us(κ; z)|2 + |Us(2κ; z)|2 + |Us(3κ; z)|2
+ δn1|Us(κ; z)| |Us(3κ; z)| exp[i{−3argUs(κ; z) + argUs(3κ; z)}]
+ δn2|Us(κ; z)| |Us(3κ; z)| exp[i{−2argUs(2κ; z) + argUs(κ; z) + argUs(3κ; z)}]},

|z| ≤ 2πδ, n = 1, 2, 3,

(52)
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a solution of the second system in (51) exists uniquely (Sirenko et al. (1985), Shestopalov &
Sirenko (1989)) and can be represented as

Ψs(nκ; z) = Ψ(nκ; z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z)), n = 1, 2, 3. (53)

Moreover, at each iteration step (i.e. for any iteration parameter s ∈ {0, 1, 2, . . .}) the solution
(53) which is caused by the exciting wave packet {|Uinc(nκ; z)| = ainc

nκ }3
n=1, satisfies the

estimate

|Ψs(nκ; z)| 2 ≤
3

∑
m=1

(ainc
mκ)

2, ∀s ∈ {0, 1, 2, . . .}, n = 1, 2, 3 (54)

due to energy relations. In particular,

|εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))|

≤ |ε(L)(z)|+ |α(z)|(3 + δn1 + δn2)
3

∑
m=1

(ainc
mκ)

2, ∀s ∈ {0, 1, 2, . . .}, n = 1, 2, 3.
(55)

The analysis of appropriate convergence criteria for the sequences {Us(nκ; z), n = 1, 2, 3}∞
s=0

and {Ψs(nκ; z), n = 1, 2, 3}∞
s=0 given by (51) provides a sufficient condition for the existence

and uniqueness of solutions of the non-linear integral equations (49). Since the kernels of the
integral equations (51) are identical, it is easy to estimate the distance between the elements
Us+1(nκ; z) and Ψs(nκ; z):

̺(Us+1(nκ; z), Ψs(nκ; z)) =
[

∫ 2πδ

−2πδ
|Us+1(nκ; z)− Ψs(nκ; z)|2dz

]1/2

=
∣

∣

∣

i(nκ)2

2Γnκ

∣

∣

∣

[

∫ 2πδ

−2πδ

∣

∣

∣

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))](Us(nκ; z0)− Ψs(nκ; z0))dz0

∣

∣

∣

2
dz
]1/2

=
(nκ)2

2Γnκ

[

∫ 2πδ

−2πδ

∣

∣

∣

∫ 2πδ

−2πδ
[1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]

× (Us(nκ; z0)− Ψs(nκ; z0))dz0

∣

∣

∣

2
dz
]1/2

≤ (nκ)2

2Γnκ

[

∫ 2πδ

−2πδ

∫ 2πδ

−2πδ
|1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))|2dz0dz

]1/2

×
[

∫ 2πδ

−2πδ
|Us(nκ; z0)− Ψs(nκ; z0)|2dz0

]1/2

≤ (nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(

|1 − ε(L)(z)|+ |εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))|
)

× ̺(Us(nκ; z), Ψs(nκ; z))

≤ (nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(

|1 − ε(L)(z)|+ 4|α(z)|
3

∑
m=1

(ainc
mκ)

2
)

̺(Us(nκ; z), Ψs(nκ; z)), (56)

n = 1, 2, 3.
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The last inequality in (56) is a consequence of (55). The estimate (56) shows that the
iterative process defined by the first system of equations (51) converges to a unique solution
determined by the second system of equations (51) if in (56) the factor in front of
̺(Us(nκ; z), Ψs(nκ; z)) satisfies the condition

(nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(

|1 − ε(L)(z)|+ 4|α(z)|
3

∑
m=1

(ainc
mκ)

2
)

< 1, n = 1, 2, 3.

Taking into account the expressions for the transverse propagation constants Γnκ = ((nκ)2 −
φ2

nκ)
1/2 = ((nκ)2 − (nκ sin ϕnκ)2)1/2 = nκ cos ϕnκ , n = 1, 2, 3, and the condition of phase

synchronism (C2) ϕκ = ϕnκ , n = 1, 2, 3, these inequalities can be represented as

nκ 2πδ max
z∈[−2πδ,2πδ]

(

|1 − ε(L)(z)|+ 4|α(z)|
3

∑
m=1

(ainc
mκ)

2
)

< cos ϕκ , n = 1, 2, 3. (57)

In summary, we have proved the following result.

Theorem 2. The condition (57) is a sufficient condition for the existence of solutions of the non-linear
integral equations (49). Such a solution can be obtained by using the iterative process given the first
system of equations in (51), or by using the equivalent iterative process that can be built on the basis of
the second system of equations in (51). The solution Ψs(nκ; z), n = 1, 2, 3, should be regarded as an
(s + 1)st approximation Us+1(nκ; z) := Ψs(nκ; z) to the desired solution U(nκ; z), n = 1, 2, 3:

Us+1(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Us+1(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U

2
s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0){
1

3
U3

s (κ; z0) + U2
s (2κ; z0)Us(κ; z0)}dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(58)
Moreover, if the elements Ψs(nκ; z) ≡ Us+1(nκ; z), n = 1, 2, 3, are not eigen-functions of the
linearised problem (49) with the induced permittivity of the layer (52) (i.e. solutions of the homogeneous
system (58)), then this solution is unique.

7. A self-consistent approach to the numerical analysis of the non-linear integral

equations

According to Angermann & Yatsyk (2011), Angermann & Yatsyk (2010), the application of
suitable quadrature rules to the system of non-linear integral equations (49) leads to a system
of complex-valued non-linear algebraic equations of the second kind:

⎧

⎨

⎩

(I − Bκ(Uκ , U2κ , U3κ))Uκ = Cκ(U2κ , U3κ) + Uinc
κ ,

(I − B2κ(Uκ , U2κ , U3κ))U2κ = Uinc
2κ ,

(I − B3κ(Uκ , U2κ , U3κ))U3κ = C3κ(Uκ , U2κ) + Uinc
3κ ,

(59)

321
Resonance Properties of Scattering and
Generation of Waves on Cubically Polarisable Dielectric Layers

www.intechopen.com



24

where {zl}N
l=1 is a discrete set of nodes such that −2πδ =: z1 < z2 < ... < zl < ... < zN =:

2πδ.
Unκ := {Ul(nκ)}N

l=1 ≈ {U (nκ; zl)}N
l=1 denotes the vector of the unknown approximate

solution values corresponding to the frequencies nκ, n = 1, 2, 3. The matrices are of the form

Bnκ(Uκ , U2κ , U3κ) = {AmKlm(nκ, Uκ , U2κ , U3κ)}N
l,m=1

with entries

Klm(nκ, Uκ , U2κ , U3κ) := − i(nκ)2

2Γnκ
exp (iΓnκ |zl − zm|)

[

1 −
{

ε(L)(zm)

+ α(zm)
(

|Um(κ)|2 + |Um(2κ)|2 + |Um(3κ)|2
+ δn1 |Um(κ)| |Um(3κ)| exp {i [−3arg Um(κ) + arg Um(3κ)]}
+ δn2 |Um(κ)| |Um(3κ)| exp {i [−2arg Um(2κ) + arg Um(κ) + arg Um(3κ)]}

)}]

.

(60)

The numbers Am are the coefficients determined by the quadrature rule, I := {δlm}N
l,m=1 is the

identity matrix, and δlm is Kronecker’s symbol.
The right-hand side of (59) is defined by

Uinc
nκ := {ainc

nκ exp[−iΓnκ(zl − 2πδ)]}N
l=1,

Cκ(U2κ , U3κ) :=
{ iκ2

2Γκ

N

∑
m=1

Am exp(iΓκ |zl − zm|)α(zm)U
2
m(2κ)Um(3κ)

}N

l=1
,

C3κ(Uκ , U2κ) :=
{ i(3κ)2

2Γ3κ

N

∑
m=1

Am exp(iΓ3κ |zl − zm|)α(zm)
[1

3
U3

m(κ) + U2
m(2κ)Um(κ)

]}N

l=1
.

The solution of (59) is approximated by means of the following iterative method:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{[

I − Bκ

(

U
(s−1)
κ , U

(S2(q))
2κ , U

(S3(q))
3κ

) ]

U
(s)
κ

= Cκ

(

U
(S2(q))
2κ , U

(S3(q))
3κ

)

+ Uinc
κ

}S1(q): ‖U
(S1(q))
κ −U

(S1(q)−1)
κ ‖/‖U

(S1(q))
κ ‖<ξ

s=1
{[

I − B2κ

(

U
(S1(q))
κ , U

(s−1)
2κ , U

(S3(q))
3κ

) ]

U
(s)
2κ

= Uinc
2κ

}S2(q): ‖U
(S2(q))
2κ −U

(S2(q)−1)
2κ ‖/‖U

(S2q )

2κ ‖<ξ

s=1
{[

I − B3κ

(

U
(S1(q))
κ , U

(S2(q))
2κ , U

(s−1)
3κ

) ]

U
(s)
3κ

= C3κ

(

U
(S1(q))
κ , U

(S2(q))
2κ

)

+ Uinc
3κ

}S3(q): ‖U
(S3(q))
3κ −U

(S3(q)−1)
3κ ‖/‖U

(S3q )

3κ ‖<ξ

s=1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪



Q

q=1

, (61)

where, for a given relative error tolerance ξ > 0, the terminating index Q ∈ N is defined by
the requirement

max
{

‖U
(Q)
κ − U

(Q−1)
κ ‖/‖U

(Q)
κ ‖, ‖U

(Q)
2κ − U

(Q−1)
2κ ‖/‖U

(Q)
2κ ‖, ‖U

(Q)
3κ − U

(Q−1)
3κ ‖/‖U

(Q)
3κ ‖
}

< ξ .
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8. Eigen-modes of the linearised problems of scattering and generation of waves

on the cubically polarisable layer

The solution of the system of non-linear equations (49) is approximated by the solution of
the linearised system of non-linear equations (58), for given values of the induced dielectric
permittivity and of the source functions at the right-hand side of the system. The solution can
be found by the help of algorithm (61), where at each step a system of linearised non-linear
complex-valued algebraic equations of the second kind is solved iteratively. The analytic
continuation of the linearised non-linear problems into the region of complex values of the
frequency parameter allows us to switch to the analysis of spectral problems. That is, the
eigen-frequencies and the corresponding eigen-fields of the homogeneous linear problems
with an induced non-linear permittivity are to be determined. The results of the development
of a spectral theory of linear problems for structures with non-compact boundaries can be
found in Yatsyk (2000), Shestopalov & Yatsyk (1997), Sirenko et al. (1985), Shestopalov &
Sirenko (1989), Sirenko et al. (2007), Sirenko & Ström (2010).
As mentioned above, the classical formulation of the problem of scattering and generation
of waves, described by the system of boundary value problems (21), (C1) – (C4), can be
reformulated as a set of independent spectral problems in the following way:
Find the eigen-frequencies κn and the corresponding eigen-functions E1(r, κn) (i.e.

{

κn ∈
Ωnκ ⊂ Hnκ , E1(r, κn)

}3

n=1
, where Ωnκ are the sets of eigen-frequencies lying on the

two-sheeted Riemann surfaces Hnκ , see Fig. 2 and the more detailed explanations below)
satisfying the equations

∇2E1(r, κn) + κ2
nεnκ (z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ)) E1(r, κn) = 0, n = 1, 2, 3, (62)

together with the following conditions:

(CS1) E1(κn; y, z) = U(κn; z) exp(iφnκy), n = 1, 2, 3

(the quasi-homogeneity condition w.r.t. the spatial variable y),

(CS2) φnκ = nφκ , n = 1, 2, 3 (the condition of phase synchronism of waves),

(CS3) Etg(κn; y, z) and Htg(κn; y, z) (i.e. E1(κn; y, z) and H2(κn; y, z)) are continuous at the

boundary layers of the structure with the induced permittivity εnκ for κ := κinc, n = 1, 2, 3,

(CS4) E1(κn; y, z)=

{

aκn

bκn

}

exp (i (φnκy ± Γκn (κn, φnκ)(z ∓ 2πδ))) , z><± 2πδ , n = 1, 2, 3

(the radiation condition w.r.t. the eigen-field).

For real values of the parameters κn and φnκ , the condition (CS4) meets the physically
reasonable requirement of the absence of radiation fields of waves coming from infinity
z = ±∞:

Im Γκn (κn, φnκ) ≥ 0, Re Γκn (κn, φnκ)Re κn ≥ 0 for Im φnκ = 0, Im κn = 0, n = 1, 2, 3.
(63)

The non-trivial solutions (eigen-fields) of problem (62), (CS1) – (CS4) can be represented as

E1(κn; y, z) = U(κn; z) exp(iφnκy) =

⎧

⎨

⎩

aκn exp(i(φnκy + Γκn (κn, φnκ)(z − 2πδ))), z > 2πδ,
U(κn; z) exp(iφnκy), |z| ≤ 2πδ,
bκn exp(i(φnκy − Γκn (κn, φnκ)(z + 2πδ))), z < −2πδ,

κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3,
(64)
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Fig. 2. The geometry of the two-sheeted Riemann surfaces Hnκ

where κ := κinc is a given constant equal to the value of the excitation frequency of the
non-linear structure, Γκn (κn, φnκ) := (κ2

n − φ2
nκ)

1/2 are the transverse propagation functions
depending on the complex frequency spectral variables κn, φnκ := nκ sin(ϕnκ) denote the
given real values of the longitudinal propagation constants,
εnκ = εnκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ)) are the induced dielectric permittivities at the
frequencies nκ corresponding to the parameter κ := κinc, Ωnκ are the sets of eigen-frequencies
and Hnκ are two-sheeted Riemann surfaces (cf. Fig. 2), n = 1, 2, 3. The range of the spectral
parameters κn ∈ Ωnκ is completely determined by the boundaries of those regions in
which the analytic continuation (consistent with the condition (63)) of the canonical Green’s
functions

G0(κn; q, q0) =
i

4Y
exp {i [φnκ (y − y0) + Γκn (κn, φnκ) |z − z0|]} /Γκn (κn, φnκ), n = 1, 2, 3,

(cf. (42)) into the complex space of the spectral parameters κn of the unperturbed problems
(62), (CS1) – (CS4) (i.e. for the special case εnκ ≡ 1, n = 1, 2, 3) is possible. These complex
spaces are two-sheeted Riemann surfaces Hnκ (see Fig. 2) with real algebraic branch points of
second order κ±n : Γκn (κ

±
n , φnκ) = 0 (i.e. κ±n = ±|φnκ |, n = 1, 2, 3) and with cuts starting at

these points and extending along the lines

(Re κn)
2 − (Im κn)

2 − φ2
nκ = 0, Im κn ≤ 0, n = 1, 2, 3 . (65)

The first, “physical” sheets (i.e. the pair of values {κn, Γκn (κn, φnκ)}) on each of the surfaces
Hnκ , n = 1, 2, 3, are completely determined by the condition (63) and the cuts (65). At the first
sheets of Hnκ the signs of the pairs {κn,Re Γκn} and {κn, Im Γκn} are distributed as follows:
Im Γκn > 0 for 0 < arg κn < π, Re Γκn ≥ 0 for 0 < arg κn < π/2 and Re Γκn ≤ 0 for
π/2 ≤ arg κn < π. For points κn with 3π/2 ≤ arg κn ≤ 2π, the function values (where
(Re κn)2 − (Im κn)2 − φnκ2 > 0) are determined by the condition Im Γκn < 0, Re Γκn > 0, for
the remaining points κn the function Γκn (κn, φnκ) is determined by the condition Im Γκn > 0,
Re Γκn ≤ 0. In the region π < arg κn < 3π/2 the situation is similar to the previous one
up to the change of the sign of Re Γκn . The second, “unphysical” sheets of the surfaces Hnκ ,
n = 1, 2, 3 are different from the “physical” ones in that, for each κn, the signs of both Re Γκn

and Im Γκn are reversed.
The qualitative analysis of the eigen-modes of the linearised problems (62), (CS1) – (CS4) is
carried out using the equivalent formulation of spectral problems for the linearised non-linear
integral equations (49). It is based on the analytic continuation of (49) (see also (58)) into the
space of spectral values κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.
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The spectral problem reduces to finding non-trivial solutions U(κn; z) of a set of homogeneous
(i.e. with vanishing right-hand sides), linear (i.e. linearised equations (49)) integral equations
with the induced dielectric permittivity at the frequencies nκ of excitation and generation:

U(κn; z) +
iκ2

n

2Γκn (κn, φnκ)

∫ 2πδ

−2πδ
exp(iΓκn (κn, φnκ)|z − z0|)

× [1 − εnκ(z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0))]U(κn; z0)dz0 = 0;

|z| ≤ 2πδ, κ := κinc, κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.

(66)

The solution of the problem (62), (CS1) – (CS4) can be obtained from the solution of the
equivalent problem (66), where – according to (CS3) – in the representation of the eigen-fields
(64) the following formulas are used:

U(κn; 2πδ) = aκn , U(κn;−2πδ) = bκn , n = 1, 2, 3. (67)

The analyticity w.r.t. the argument κn ∈ Hnκ , n = 1, 2, 3, and the compactness of the operator
functions (cf. (66)) Bnκ(κn) [U(κn; ·)] : L2(−2πδ, 2πδ) → L2(−2πδ, 2πδ), n = 1, 2, 3, where

Bnκ(κn) [U(κn; z)] = − iκ2
n

2Γκn (κn, φnκ)

∫ 2πδ

−2πδ
exp(iΓκn (κn, φnκ)|z − z0|)

× [1 − εnκ(z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0))]U(κn; z0)dz0, κ := κinc, n = 1, 2, 3,

(68)

are necessary conditions in the analytic Fredholm theorem (see (Reed & Simon, 1980, Thm.
VI.14)). Taking into account that the resolvent set of (66) is non-empty in Hnκ , the theorem
implies that the resolvent operator (I − Bnκ(κn))−1 (where I is the identity operator) exists
and is a holomorphic operator function of the parameters κn ∈ Hnκ , with the exception of not
more than countable sets of isolated points Ωnκ , n = 1, 2, 3 (i.e. sets that have no acumulation
points in the finite part of each of the surfaces Hnκ , n = 1, 2, 3). In this case (I − Bnκ(κn))−1 is
meromorphic in Hnκ , the residues at the poles are operators of finite rank and, if κn ∈ Ωnκ , then
the equation (66) Bnκ(κn)U = U has a non-trivial solution in Hnκ , n = 1, 2, 3. Summarizing the
above discussion, we obtain the following result.

Theorem 3. The spectra Ωnκ of the problem (62), (CS1) – (CS4), and also of the equivalent problem
(66) for the dielectric layer with the induced piecewise continuous permittivity at the frequencies
nκ of excitation and generation, consist of not more than countable sets of isolated points, without
accumulation points in the finite part of each of the surfaces Hnκ , n = 1, 2, 3. The resolvents of the
spectral problems at these points are poles of finite order.

9. Algorithm for the numerical analysis of the eigen-modes of the linearised

problems

The qualitative analysis of the spectral characteristics allows to develop algorithms for solving
the spectral problems (62), (CS1) – (CS4) by reducing them to the equivalent spectral problem
of finding non-trivial solutions of the integral equations (66), see Shestopalov & Yatsyk
(1997), Yatsyk (2000). The solvability of (66) follows from an analysis of the basic qualitative
characteristics of the spectra. Applying to the integral equations (66) appropriate quadrature
formulas, we obtain a set of independent systems of linear algebraic equations of second kind
depending non-linearly on the spectral parameter: (I − Bnκ(κn))Uκn = 0, where κn ∈ Hnκ ,
κ := κinc, n = 1, 2, 3. Consequently, the spectral problem of finding the eigen-frequencies
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κn ∈ Ωnκ ⊂ Hnκ and the corresponding eigen-fields (i.e. the non-trivial solutions of the
integral equations (66)) reduces to the following algorithm:

⎧

⎨

⎩

fnκ(κn) := det(I − Bnκ(κn)) = 0,
(I − Bnκ(κn))Uκn = 0,

κ := κinc, κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.
(69)

Here we use a similar notation to that in Section 7. κn are the desired eigen-frequencies, and

Uκn = {U(κn; zl)}N
l=1 := {Ul(κn)}N

l=1 are the vectors of the unknown approximate solution
values corresponding to the frequencies κn. The matrices are of the form

Bnκ(κn) := Bnκ(κn; Uκ , U2κ , U3κ) = {AmKlm(κn, Uκ , U2κ , U3κ)}N
l,m=1 (70)

with given values of the vectors of the scattered and generated fields Unκ = {U(nκ; zl)}N
l=1 :=

{Ul(nκ)}N
l=1 , n = 1, 2, 3. The numbers Am are the coefficients determined by the quadrature

rule, and the entries Klm(κn, Uκ , U2κ , U3κ) are calculated by means of (60), where the first
argument nκ is replaced by κn. The eigen-frequencies κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3, i.e.
the characteristic numbers of the dispersion equations of the problem (69), are obtained by
solving the corresponding dispersion equations fnκ(κn) := det(I − Bnκ(κn)) = 0 by the help
of Newton’s method or its modifications. The non-trivial solutions Uκn of the homogeneous
systems of linear algebraic equations (69) corresponding to these characteristic numbers are
the eigen-fields (64) of the linearised non-linear layered structures with an induced dielectric
constant (52). Since the solutions Uκn are unique up to multiplication by an arbitrary constant,
we require U(κn; 2πδ) = aκn := 1 (cf. (64)). According to (70), the matrix entries in (69)
depend on the dielectric permittivities. The latter are defined by the scattered and generated
fields Uκ , U2κ , U3κ of the problem (49) by means of the algorithm (61). This defines the basic
design of the implemented numerical algorithm. The investigation of the eigen-modes of
the linearised non-linear structures (69) should always precede the solution of the non-linear
scattering and generation problem in the self-consistent formulation (61). Note that, in the
analysis of the linear structures, the problem of excitation (scattering) and the spectral problem
can be solved independently.
In physical applications, a very useful theorem (see (Sánchez-Palencia, 1980, Thm. 7.2)) asserts
the continuous dependence of the operator (68) (or (70)) of the spectral problem on some
non-spectral parameter τ of the problem under consideration, i.e. Bnκ(κn, τ) (or Bnκ(κn, τ)).
In particular, this theorem implies that the characteristic numbers κn(τ), i.e. the poles of
(I − Bnκ(κn, τ))−1 (or (I − Bnκ(κn, τ))−1) continuously depend on τ and, therefore, they may
appear or disappear only at the boundary of any given open, connected region D ⊂ Hnκ ,
n = 1, 2, 3. Further, we interpret κn(τ) ∈ Ωnκ(τ) ⊂ Hnκ as a branch of the dispersion curves in
the eigen-fields U(κn(τ), z) of the problem under investigation. Finally we mention that the
classification of scattered, generated or eigen-fields of the dielectric layer by the Hm,l,p-type
adopted in our paper is identical to that given in Shestopalov & Sirenko (1989), Shestopalov &
Yatsyk (1997), Yatsyk (2000). In the case of E-polarisation, see (12), Hm,l,p (or TEm,l,p) denotes
the type of polarisation of the wave field under investigation. The subscripts indicate the
number of local maxima of |E1| (or |U|, as |E1| = |U|, see (23), (64)) along the coordinate axes
x, y and z (see Fig. 1). Since the considered waves are homogeneous along the x-axis and
quasi-homogeneous along the y-axis, we study actually fields of the type H0,0,p (or TE0,0,p),
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where the subscript p is equal to the number of local maxima of the function |U| of the
argument z ∈ [−2πδ, 2πδ].

10. Numerical analysis. Third-harmonic generation by resonant scattering of a

wave on a layer with negative and positive values of the cubic susceptibility

Consider the excitation of the non-linear structure by a strong electromagnetic field at the
basic frequency only (see (20)), i.e.

{Einc
1 (κ; q) �= 0, Einc

1 (2κ; q) = 0, Einc
1 (3κ; q) = 0}, where {ainc

κ �= 0, ainc
2κ = ainc

3κ = 0}. (71)

In this case, the number of equations in the systems can be reduced. The second equations
in all the systems (21), (24) and (49), corresponding to a problem at the double frequency 2κ
with a trivial right-hand side, can be eliminated by setting E1(r, 2κ) := 0 (cf. Angermann &
Yatsyk (2010), Angermann & Yatsyk (2011)). The dielectric permittivity of the non-linear layer
(cf. (19)) in the case (71) simplifies to

εnκ (z, α(z), E1(r, κ), 0, E1(r, 3κ)) = εnκ (z, α(z), U(κ; z), U(3κ; z))

=: ε(L)(z) + ε
(NL
nκ (α(z), U(κ; z), U(3κ; z))

= ε(L)(z) + α(z)
[

|U(κ; z)|2 + |U(3κ; z)|2
]

+ δn,1α(z)|U(κ; z)||U(3κ; z)| exp [i {−3arg U(κ; z) + arg U(3κ; z)}] , n = 1, 3.

(72)

The desired solution of the scattering and generation problem (21), (C1) – (C4) (or of the
equivalent problems (24) and (49)) can be represented as follows (cf. (23)):

E1(nκ; y, z) = U(nκ; z) exp(iφnκy)

=

⎧

⎨

⎩

δn1ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,
U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ,
n = 1, 3,

(73)
where U(κ; z), U(3κ; z), |z| ≤ 2πδ, are the solutions of the reduced systems (24) or (49).
According to (25) we determine the values of complex amplitudes

{

ascat
nκ , bscat

nκ : n = 1, 3
}

in
(73) for the scattered and generated fields by means of the formulas

U(nκ; 2πδ) = δn1ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1, 3. (74)

According to the results of Section 7,the solution of (21), (C1) – (C4) reduces in the case of (71)
to the following system (cf. (59)):

{

(I − Bκ(Uκ , U3κ))Uκ = Uinc
κ ,

(I − B3κ(Uκ , U3κ))U3κ = C3κ (Uκ) .
(75)

The system (75) is written taking into account (71), i.e. Uinc
2κ = 0, Uinc

3κ = 0, U2κ = 0. Here (cf.
(59)) Bnκ(Uκ , U3κ) = Bnκ(Uκ , 0, U3κ), n = 1, 3, denote the matrices of the complex-valued
non-linear algebraic equations, and Uinc

κ , C3κ (Uκ) = C3κ (Uκ , 0) , Cκ (0, Uκ) = 0 are
the right-hand side vectors. The solution of (75) is obtained by means of successive
approximations using the self-consistent approach based on the iterative algorithm (61).
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In order to describe the scattering and generation properties of the non-linear structure in the
zones of reflection z > 2πδ and transmission z < −2πδ, we introduce the following notation:

Rnκ := |ascat
nκ |2/|ainc

κ |2 and Tnκ := |bscat
nκ |2/|ainc

κ |2.

The quantities Rnκ , Tnκ are called reflection, transmission or generation coefficients of the waves
w.r.t. the intensity of the excitation field.
We note that in the considered case of the excitation {ainc

κ �= 0, ainc
2κ = 0, ainc

3κ = 0} and for

non-absorbing media with Im

[

ε(L)(z)
]

= 0, the energy balance equation Rκ + Tκ + R3κ +

T3κ = 1 is satisfied. This equation represents the law of conservation of energy (Shestopalov
& Sirenko (1989), Vainstein (1988)). The quantity W3κ/Wκ , which characterises the portion of
energy generated in the third harmonic in comparison to the energy scattered in the non-linear
layer, is of particular interest. Here by Wnκ = |ascat

nκ |2 + |bscat
nκ |2 we denote the total energy of

the scattered and generated fields at the frequencies nκ, n = 1, 3.
The spectral characteristics of the linearised non-linear problems (62), (CS1) – (CS4) with the
induced dielectric permittivity (72) at the frequency κ of excitation and the frequency 3κ of
generation were calculated by means of the algorithm (69). In the graphical illustration of the
eigen-fields Uκn in the representation (64) we have set aκn := 1 for κn ∈ Ωnκ ⊂ Hnκ , n = 1, 3.
In what follows we want to discuss some results of the numerical analysis of scattering and
generation properties of cubic non-linear polarisable layers with both negative and positive
values of the cubic susceptibility of the medium. We consider non-linear dielectric layers (see

Fig. 1) with a dielectric permittivity εnκ (z, α(z), U(κ; z), U(3κ; z)) = ε(L)(z) + ε
(NL
nκ of the form

(72), where
{

ε(L)(z), α(z)
}

=
{

ε(L) = 16, α = ∓0.01, z ∈ [−2πδ, 2πδ]
}

with the parameter δ := 0.5, the excitation frequency κinc := κ := 0.375, the generation
frequency of the third harmonic field κgen := 3κ := 1.125, and the angle of incidence of the
plane wave ϕκ ∈ [0◦, 90◦).

10.1 A non-linear layer with a negative value of the cubic susceptibility of the medium

The results of the numerical analysis of scattering and generation properties as well as the
eigen-modes of the dielectric layer with a negative value of the cubic susceptibility of the
medium (α = −0.01) are presented in Fig. 3 – Fig. 9.

Fig. 3. The portion of energy generated in the third harmonic (left) and some graphs

describing the properties of the non-linear layer at ainc
κ = 24 and ϕκ = 0◦ (right): #1 . . . ε(L),

#2 . . . |U(κ; z)|, #3 . . . |U(3κ; z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . . Im(ε3κ) ≡ 0
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Fig. 3 (left) shows the dependence of W3κ/Wκ on the angle of incidence ϕκ and on the
amplitude ainc

κ of the incident field. It describes the portion of energy generated in the
third harmonic by the non-linear layer when a plane wave at the excitation frequency κ and
with the amplitude ainc

κ is passing the layer under the angle of incidence ϕκ . In particular,
W3κ/Wκ = 0.039 at ainc

κ = 24 and ϕκ = 0◦, i.e. W3κ amounts to 3.9% of the total energy Wκ

scattered at the frequency of excitation κ. Fig. 3 (right) displays some graphs characterising the
scattering and generation properties of the non-linear structure. Graphs #4 and #5 show the
real and imaginary parts of the permittivity at the frequency of excitation, while graphs #6 and
#7 display the corresponding values at the generation frequency. The figure also shows the
absolute values |U(κ; z)| of the amplitudes of the full scattered field H0,0,4 at the frequency of
excitation κ (graph #2) and |U(3κ; z)| of the generated field of the H0,0,9-type at the frequency
3κ (graph #3). The values |U(κ; z)| and |U(3κ; z)| are given in the non-linear layered structure
(|z| ≤ 2πδ) and outside it (i.e. in the zones of reflection z > 2πδ and transmission z < −2πδ).

Fig. 4. Graphs of the scattered and generated fields in the non-linear layered structure for
ϕκ = 0◦:

∣

∣Uκ
[

ainc
κ , z
]∣

∣ (left),
∣

∣U3κ

[

ainc
κ , z
]∣

∣ (right)

Figs. 4 and 5 show the numerical results obtained for the scattered and the generated fields in
the non-linear structure and for the non-linear dielectric permittivity of the layered structure
in dependence on the amplitude ainc

κ at normal incidence ϕκ = 0◦ of the plane wave.
Fig. 4 shows the graphs of

∣

∣Uκ
[

ainc
κ , z
]∣

∣ and
∣

∣U3κ

[

ainc
κ , z
]∣

∣ demonstrating the dynamic
behaviour of the scattered and the generated fields |U(κ; z)| and |U(3κ; z)| in the non-linear
layered structure in dependence on an increasing amplitude ainc

κ at normal incidence ϕκ = 0◦

of the plane wave of the frequency κ. We mention that, in the range of amplitudes ainc
κ ∈ (0, 24]

under consideration, the scattered field is of the type H0,0,4, see Fig. 4 (left). The generation of
the third harmonic field can be observed within the range ainc

κ ∈ [4, 24], see Fig. 4 (right). The
generated field has the type H0,0,10 for ainc

κ ∈ [4, 23), and H0,0,9 for ainc
κ ∈ [23, 24]. The change of

type of the generated field from H0,0,10 to H0,0,9 for an increasing amplitude ainc
κ is due to the

loss of one local maximum of the function |U(3κ; z)|, z ∈ [−2πδ, 2πδ], at ainc
κ = 23 (see the

point with coordinates (ainc
κ = 23, z = 1.15, |U3κ | = 1.61) in Fig. 4 (right)).

The non-linear parts ε
(NL)
nκ of the dielectric permittivity at each frequency κ and 3κ depend

on the values Uκ := U(κ; z) and U3κ := U(3κ; z) of the fields, see (72). The variation of

the non-linear parts ε
(NL)
nκ of the dielectric permittivity for an increasing amplitude ainc

κ of
the incident field are illustrated by the behaviour of Re

(

εκ
[

ainc
κ , z
])

(Fig. 5 (top left)) and

Im
(

εκ
[

ainc
κ , z
])

(Fig. 5 (top right)) at the frequency κ, and by ε3κ

[

ainc
κ , z
]

at the triple frequency

3κ (Fig. 5 (bottom left)). In Fig. 5 (top right) the graph of Im
(

εκ
[

ainc
κ , z
])

for a given amplitude

ainc
κ characterises the loss of energy in the non-linear medium (at the frequency of excitation κ)
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Fig. 5. Graphs characterising the non-linear dielectric permittivity at normal incidence of the
plane wave ϕκ = 0◦: Re

(

εκ
[

ainc
κ , z
])

(top left), Im
(

εκ
[

ainc
κ , z
])

(top right), ε3κ

[

ainc
κ , z
]

(bottom left), Re
(

εκ
[

ainc
κ , z
])

− ε3κ

[

ainc
κ , z
]

(bottom right)

caused by the generation of the electromagnetic field of the third harmonic (at the frequency

3κ). In our case Im

[

ε(L) (z)
]

= 0 and Im [α (z)] = 0, therefore, according to (72),

Im(εκ) = α(z)|U(κ; z)||U(3κ; z)|Im (exp [i {−3argU(κ; z) + argU(3κ; z)}]) . (76)

From Fig. 5 (top right) we see that a small value of ainc
κ induces a small amplitude of the

function Im(εκ), i.e. |Im(εκ)| ≈ 0. The increase of ainc
κ corresponds to a strong field excitation

and leads to the generation of a third harmonic field U(3κ; z). Fig. 5 (top right) shows the
dynamic behaviour of Im(εκ). It can be seen that the values of Im(εκ) may be positive
or negative along the height of the non-linear layer, i.e. in the interval z ∈ [−2πδ, 2πδ].
The zero values of Im(εκ) are determined by the phase relation between the scattered
and the generated fields U(κ; z), U(3κ; z) in the non-linear layer, see (76), −3argU(κ; z) +
argU(3κ; z) = pπ, p = 0,±1, . . . We mention that the behaviour of both the quantities
Im(εκ) and

Re(εκ)− ε3κ = α(z)|U(κ; z)||U(3κ; z)|Re (exp [i {−3argU(κ; z) + argU(3κ; z)}])

plays an essential role in the process of third harmonic generation because of the presence
of the last term in (72). Fig. 5 (bottom right) shows the graph describing the behaviour of
Re
(

εκ
[

ainc
κ , z
])

− ε3κ

[

ainc
κ , z
]

.
The scattering and generation properties of the non-linear structure in the range ϕκ ∈ [0◦, 90◦),
ainc

κ ∈ [1, 24] of the parameters of the excitation field are presented in Figs. 6 – 7. The
graphs show the dynamics of the scattering (Rκ

[

ϕκ , ainc
κ

]

, Tκ
[

ϕκ , ainc
κ

]

, see Fig. 6 (top)) and

generation (R3κ

[

ϕκ , ainc
κ

]

, T3κ

[

ϕκ , ainc
κ

]

, see Fig. 6 (bottom)) properties of the structure. Fig. 7
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Fig. 6. The scattering and generation properties of the non-linear structure: Rκ
[

ϕκ , ainc
κ

]

(top

left), Tκ
[

ϕκ , ainc
κ

]

(top right), R3κ

[

ϕκ , ainc
κ

]

(bottom left), T3κ

[

ϕκ , ainc
κ

]

(bottom right)

shows cross sections of the graphs depicted in Figs. 6 and 3 by the planes ϕκ = 0◦ and
ainc

κ = 20.
In the resonant range of wave scattering and generation frequencies, i.e. κscat := κinc = κ
and κgen = 3κ, resp., the dynamic behaviour of the characteristic quantities depicted in
Figs. 6 – 7 has the following causes. The scattering and generation frequencies are close to
the corresponding eigen-frequencies of the linear (α = 0) and linearised non-linear (α �= 0)
spectral problems (62), (CS1) – (CS4). Furthermore, the distance between the corresponding
eigen-frequencies of the spectral problems with α = 0 and α �= 0 is small. Thus, the graphs in
Fig. 7 can be compared with the dynamic behaviour of the branches of the eigen-frequencies
of the spectral problems presented in Fig. 8. The graphs of the eigen-fields corresponding to
the branches of the considered eigen-frequencies are shown in Fig. 9.

Fig. 7. The curves Rκ (#1), Tκ (#2), R3κ (#3), T3κ (#4), W3κ/Wκ (#5) for ϕκ = 0◦ (left) and
ainc

κ = 20 (right)
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Fig. 8. The curves κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the complex

eigen-frequencies Re(κ
(L)
1 ) (#3.1), Im(κ

(L)
1 ) (#3.2), Re(κ

(L)
3 ) (#4.1), Im(κ

(L)
3 ) (#4.2) of the linear

problem (α = 0) and Re(κ
(NL)
1 ) (#5.1), Im(κ

(NL)
1 ) (#5.2), Re(κ

(NL)
3 ) (#6.1), Im(κ

(NL)
3 ) (#6.2) of

the linearised non-linear problem (α = −0.01) for ϕκ = 0◦ (left) and ainc
κ = 20 (right)

Fig. 8 illustrates the dispersion characteristics of the linear (α = 0) and the linearised

non-linear (α = −0.01) layer εnκ = ε(L) + ε
(NL
nκ , n = 1, 3, see (72). The non-linear components

of the permittivity at the scattering (excitation) frequencies κscat := κinc = κ and the
generation frequencies κgen := κ depend on the amplitude ainc

κ and the angle of incidence ϕκ

of the incident field. This is reflected in the dynamics of the behaviour of the complex-valued
eigen-frequencies of the linear and the linearised non-linear layer. Comparing the results
shown in Fig. 8 and Fig. 7, we note the following. The dynamics of the change of the scattering
properties Rκ , Tκ of the non-linear layer (compare the behaviour of curves #1 and #2 in
Fig. 7) depends on the magnitude of the distance between the curves #3.1 and #5.1 in Fig.
8. Decanelising properties of the layer occur when α < 0. A previously transparent (Fig. 7
(left)) or reflective (Fig. 7 (right)) structure loses its properties. It becomes transparent and the
reflection and transmission coefficients become comparable. The greater the distance between
the curves #4.1 and #6.1 (see Fig. 8), the greater the values of R3κ , T3κ , W3κ/Wκ , characterising
the generating properties of the non-linear layer, see Fig. 7. The magnitudes of the absolute

Fig. 9. The graphs of the eigen-fields of the layer for ϕκ = 0◦, ainc
κ = 20. The linear problem

(α = 0, left figure): |U(κ
(L)
1 ; z)| with κ

(L)
1 = 0.3749822 − i 0.02032115 (#1), |U(κ

(L)
3 ; z)| with

κ
(L)
3 = 1.124512 − i 0.02028934 (#2), the linearised non-linear problem (α = −0.01, right

figure): |U(κ
(NL)
1 ; z)| with κ

(NL)
1 = 0.3949147 − i 0.02278218 (#1), |U(κ

(NL)
3 ; z)| with

κ
(NL)
3 = 1.168264 − i 0.02262382 (#2)
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values of the eigen-fields shown in Fig. 9 correspond to the branches of the eigen-frequencies
of the linear and the linearised non-linear spectral problems, see Fig. 8. The curves in Fig. 9
are labeled by #1 for an eigen-field of type H0,0,4 and by #2 for an eigen-field of type H0,0,10.
The loss of symmetry in the eigen-fields with respect to the z-axis in Fig. 9 (right) is due to the
violation of the symmetry (w.r.t. the axis z = 0) in the induced dielectric permittivity at both
the scattering (excitation) and the oscillation frequencies, see Fig. 5.

10.2 A non-linear layer with a positive value of the cubic susceptibility of the medium

The results of the numerical analysis of scattering and generation properties as well as the
eigen-modes of the dielectric layer with a positive value of the cubic susceptibility of the
medium (α = +0.01) are presented in Fig. 10 – Fig. 16.

Fig. 10. The portion of energy generated in the third harmonic (top left/right and bottom
left): #1 . . . ainc

κ = 1, #2 . . . ainc
κ = 9.93, #3 . . . ainc

κ = 14, #4 . . . ainc
κ = 19, and some graphs

describing the properties of the non-linear layer for ainc
κ = 14 and ϕκ = 66◦ (bottom right): #1

. . . ε(L), #2 . . . |U(κ; z)|, #3 . . . |U(3κ; z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . .
Im(ε3κ) ≡ 0

The results shown in Fig. 10 (top left/right and bottom left) allow us to track the dynamic
behaviour of the quantity W3κ/Wκ characterising the ratio of the generated and scattered
energies. In particular, the value W3κ/Wκ = 0.3558 for ainc

κ = 14 and ϕκ = 66◦ (see the
graph #3 in Fig. 10 (bottom left)) indicates that W3κ is 35.58% of Wκ . This is the maximal value
of W3κ/Wκ that has been achieved. The numerical analysis of the processes displayed by the
curves #3 in the range of angles ϕκ ∈ (66◦, 79◦) and #4 in the range of angles ϕκ ∈ (62◦, 82◦)
did not lead to the convergence of the computational algorithm. Among the results shown in
Fig. 10 (bottom right) we mention that the curve #2 describes the scattered field of type H0,0,4,
and the curve #3 the generated field of type H0,0,10.
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The results of Fig. 11 (left) show that, in the range ainc
κ ∈ (0, 22] of the amplitude of the incident

field and for an incident angle ϕκ = 60◦ of the plane wave, the scattered field has the type
H0,0,4. The generated field, observed in the range ainc

κ ∈ [5, 22], is of the type H0,0,10, see Fig.
11 (right). The surfaces presented in Fig. 12 characterise the non-linear dielectric permittivity
of the layer (72) induced by the scattered and generated fields shown in Fig. 11. Here, as in
Subsection 10.1, the quantity Im (εκ) takes both positive and negative values along the height
of the non-linear layer (i.e. in the interval z ∈ [−2πδ, 2πδ]), see Fig. 12 (top right). For a given
amplitude ainc

κ , the graph of Im
(

εκ
[

ainc
κ , z
])

characterises the loss of energy in the non-linear
layer at the excitation frequency caused by the generation of the electromagnetic field of the
third harmonic.

Fig. 11. Graphs of the scattered and generated fields in the non-linear layered structure for
ϕκ = 60◦:

∣

∣Uκ
[

ainc
κ , z
]∣

∣ (left),
∣

∣U3κ

[

ainc
κ , z
]∣

∣ (right)

Fig. 12. Graphs characterising the non-linear dielectric permittivity for ϕκ = 60◦:
Re
(

εκ
[

ainc
κ , z
])

(top left), Im
(

εκ
[

ainc
κ , z
])

(top right), ε3κ

[

ainc
κ , z
]

(bottom left),

Re
(

εκ
[

ainc
κ , z
])

− ε3κ

[

ainc
κ , z
]

(bottom right)
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Fig. 13. The scattering and generation properties of the non-linear structure: Rκ
[

ϕκ , ainc
κ

]

(top

left, second to the last left), Tκ
[

ϕκ , ainc
κ

]

(top right, second to the last right), R3κ

[

ϕκ , ainc
κ

]

(second from top left, bottom left), T3κ

[

ϕκ , ainc
κ

]

(second from top right, bottom right)

The scattering and generation properties of the non-linear structure in the ranges ϕκ ∈
[0◦, 90◦), ainc

κ ∈ [1, 9.93] and ϕκ ∈ [0◦, 60◦], ainc
κ ∈ [1, 19] of the parameters of the excitation

field are presented in Fig. 13 (top 4) and (last 4), respectively. Fig. 14 shows cross sections of
the surfaces depicted in Fig. 13 and of the graph of W3κ/Wκ

[

ϕκ , ainc
κ

]

(see Fig. 10 (top)) by

335
Resonance Properties of Scattering and
Generation of Waves on Cubically Polarisable Dielectric Layers

www.intechopen.com



38

Fig. 14. The curves Rκ (#1), Tκ (#2), R3κ (#3), T3κ (#4), W3κ/Wκ (#5) for ϕκ = 60◦ (left) and
ainc

κ = 9.93 (right)

the planes ϕκ = 60◦ and ainc
κ = 9.93. The dynamic behaviour of the characteristic quantities

depicted in Figs. 13 and 14 is caused by the fact that the corresponding eigen-frequencies of
the problems (62), (CS1) – (CS4) with α = 0 and with α �= 0 are close together. They also
depend on the proximity of the corresponding eigen-frequencies to the scattering (excitation)
and generation frequencies κscat := κinc = κ and κgen := 3κ of the waves.
We start the analysis of the results of our calculations with the comparison of the dispersion
relations given by the branches of the eigen-frequencies (curves #3.1, #3.2 and #5.1, #5.2) near
the scattering frequency (curve #1, corresponding to the excitation frequency) and (curves
#4.1, #4.2, #6.1, #6.2) near the oscillation frequency (line #2) in the situations presented in Fig.
8 (where α < 0) and Fig. 15 (where α > 0). We point out that the situations shown in Fig. 8
and Fig. 15 are fundamentally different. In the case of Fig. 8 (α < 0), the graph #5.1 lies above
the graph #3.1 and the graph #6.1 above the graph #4.1 in the vicinity of the lines #1 and #2,
respectively. This is the typical for the case of decanalisation, see Subsection 10.1.
In the situation of Fig. 15 (α > 0) we observe a different behaviour. Here, near the lines #1 and
#2, respectively, the graph #5.1 lies below the graph #3.1 and the graph #6.1 below the graph
#4.1. That is, canalising properties (properties of transparency) of the non-linear layer occur if
α > 0. This case is characterised by the increase of the angle of transparency of the non-linear
structure at the excitation frequency with an increasing amplitude of the incident field (see

Fig. 15. The curves κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the complex

eigen-frequencies Re(κ
(L)
1 ) (#3.1), Im(κ

(L)
1 ) (#3.2), Re(κ

(L)
3 ) (#4.1), Im(κ

(L)
3 ) (#4.2) of the linear

problem (α = 0) and Re(κ
(NL)
1 ) (#5.1), Im(κ

(NL)
1 ) (#5.2), Re(κ

(NL)
3 ) (#6.1), Im(κ

(NL)
3 ) (#6.2) of

the linearised non-linear problem (α = +0.01) for ϕκ = 60◦ (left) and ainc
κ = 9.93 (right)
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Fig. 13 (top left), (second to the last left), there where the reflection coefficient is close to zero).
The analysis of the eigen-modes of Fig. 15 (α > 0) allows us to explain the mechanisms of the
canalisation phenomena (transparency) (see Fig. 13 (top left), (second to the last left), Fig. 14)
and wave generation (see Fig. 13 (second from top), (bottom), Fig. 14).
Comparing the results shown in Fig. 14 and Fig. 15 we note the following. The intersection
of the curves #1 and #5.1 in Fig. 15 defines certain parameters, in the neighborhood of which
the canalisation effect (transparency) of the non-linear structure can be observed in Fig. 14.
For example, in Fig. 15 (left) the curves #1 and #5.1 intersect at ainc

κ = 9.5, also here the curve
#5.2 achieves a local maximum. Near this value, we see the phenomenon of canalisation
(transparency) of the layer in Fig. 14 (left). If we compare the Figs. 14 (right) and 15 (right),
we detect a similar situation. The intersection of the curves #1 and #5.1 defines the parameter
ϕκ = 64◦, near which we observe the canalisation effect in Fig. 15 (right). The same is true – to
some extent – for the description of the wave generation processes. For example, for similar
values of the imaginary parts of the branches of the eigen-frequencies #5.2 and #6.2 in Fig.
15 (right), the intersection of the curves #2 and #6.1 defines the parameter ϕκ = 45◦. Near
this value, stronger generation properties of the layer can be observed, see Fig. 14 and Fig. 13
(second from top), at ϕκ = 45◦. Let us also consider the situation in Fig. 15 (left). Here, at the
point of intersection of the curves #2 and #6.1, the graph #5.2 starts to decrease monotonically
in some interval. The intersection of the curves #2 and #6.1 defines the parameter ainc

κ = 12.6,
which falls into the range [9.5, 13.6] of values of the amplitudes at which the curve #5.2 is
monotonically decreasing. This leads to a shift in the imaginary part of the eigen-frequency
of the scattering structure (graph #5.2) with respect to the eigen-frequency of the generating
structure (graph #6.2). The magnitude of the shift depends on the distance between the curves
of #6.2 and #5.2 at the given value ainc

κ . The maximal distance between the graphs #6.2 and #5.2
is achieved at the local minimum of the graph #5.2 at ainc

κ = 13.6. Right from this point, i.e.
with an increasing amplitude ainc

κ , the distance between the graphs #6.2 and #5.2 shows no
significant change. The maximum value of the generation is achieved at an amplitude close
to the intersection of curves #2 and #6.1, but shifted to the point of the local minimum of the
curve #5.2, see R3κ , T3κ , W3κ/Wκ in Fig. 14 (left), Fig. 13 (bottom) and Fig. 10 (top right).

Fig. 16. The graphs of the eigen-fields of the layer for ϕκ = 60◦, ainc
κ = 14. The linear problem

(α = 0, left figure): |U(κ
(L)
1 ; z)| with κ

(L)
1 = 0.3829155 − i 0.01066148 (#1), |U(κ

(L)
3 ; z)| with

κ
(L)
3 = 1.150293 − i 0.01062912 (#2), the linearised non-linear problem (α = +0.01, right

figure): |U(κ
(NL)
1 ; z)| with κ

(NL)
1 = 0.3705110 − i 0.01049613 (#1), |U(κ

(NL)
3 ; z)| with

κ
(NL)
3 = 1.121473 − i 0.009194824 (#2)
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Fig. 16 presents the characteristic distribution of the eigen-fields corresponding to the
branches of the eigen-frequencies under consideration. The graphs of the eigen-fields of type
H0,0,4 are labeled by #1, the graphs of the eigen-fields of type H0,0,10 by #2.
The numerical results presented in this paper were obtained using an approach based on
the description of the wave scattering and generation processes in a non-linear, cubically
polarisable layer by a system of non-linear integral equations (49), and of the corresponding
spectral problems by the non-trivial solutions of the integral equations (66). We have
considered an excitation of the non-linear layer defined by the condition (71). For this case
we passed from (49) to (75) and from (66) to (69) by the help of Simpson’s quadrature rule.
The numerical solution of (75) was obtained using the self-consistent iterative algorithm (61).
The problem (69) was solved by means of Newton’s method. In the investigated range of
parameters, the dimension of the resulting systems of algebraic equations was N = 301, and
the relative error of calculations did not exceed ξ = 10−7.

11. Conclusion

We have investigated the problem of scattering and generation of waves on a non-linear,
layered, cubically polarisable structure, which is excited by a packet of waves, in the range
of resonant frequencies. The theoretical and numerical results complement the previously
presented investigations from Angermann & Yatsyk (2011), Angermann & Yatsyk (2010),
Shestopalov & Yatsyk (2010). The mathematical description of the wave scattering and
generation processes on a non-linear, layered, cubically polarisable structure reduces to a
system of non-linear boundary-value problems. This classical formulation of the problem is
equivalent to a system of boundary-value problems of Sturm-Liouville type and to a system of
one-dimensional non-linear Fredholm integral equations of the second kind. In this paper, for
each of these problems we have obtained sufficient conditions for existence and uniqueness
of the solution and we have developed self-consistent algorithms for the numerical analysis.
Within the framework of the self-consistent approach we could show that the variation of
the imaginary part of the permittivity of the layer at the excitation frequency can take both
positive and negative values along the height of the non-linear layer. This effect is caused by
the energy consumption in the non-linear medium at the frequency of the incident field which
is spent for the generation of the electromagnetic field of the third harmonic. It was shown
that layers with negative and positive values of the coefficient of cubic susceptibility of the
non-linear medium have fundamentally different scattering and generation properties in the
range of resonance. So, for the considered here layer with a negative value of the susceptibility,
the maximal portion of the total energy generated in the third harmonic was observed in the
direction normal to the structure and amounted to 3.9% of the total dissipated energy. For
a layer with a positive value of the susceptibility it was possible to reach such intensities of
the excitation field under which the maximum of the relative portion of the total energy was
36% and was observed near the angle of transparency which increasingly deviates from the
direction normal to the layer with increasing intensity of the incident field.
The approximate solution of the non-linear problems was obtained by means of solutions
of linear problems with an induced non-linear dielectric permeability. The analytical
continuation of these linear problems into the region of complex values of the frequency
parameter allowed us to switch to the analysis of spectral problems. In the frequency domain,
the resonant scattering and generation properties of non-linear structures are determined
by the proximity of the excitation frequencies of the non-linear structures to the complex
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eigen-frequencies of the corresponding homogeneous linear spectral problems with the
induced non-linear dielectric permeability of the medium.
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